論文の概要: Predicting Terrorist Attacks in the United States using Localized News
Data
- arxiv url: http://arxiv.org/abs/2201.04292v1
- Date: Wed, 12 Jan 2022 03:56:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-13 14:53:31.316075
- Title: Predicting Terrorist Attacks in the United States using Localized News
Data
- Title(参考訳): ローカルニュースデータを用いた米国におけるテロ攻撃予測
- Authors: Steven J. Krieg, Christian W. Smith, Rusha Chatterjee, Nitesh V.
Chawla
- Abstract要約: 我々は、テロ攻撃を予測するために、局所的なニュースデータから学習する機械学習モデルを提示する。
主な発見は、テロリズムを連続的なプロセスではなく独立した出来事の集合としてモデル化することは実りあるアプローチであるということである。
その結果,位置の違いを考慮に入れた局所モデルの必要性が浮き彫りになった。
- 参考スコア(独自算出の注目度): 13.164412455321907
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Dozens of terrorist attacks are perpetrated in the United States every year,
often causing fatalities and other significant damage. Toward the end of better
understanding and mitigating these attacks, we present a set of machine
learning models that learn from localized news data in order to predict whether
a terrorist attack will occur on a given calendar date and in a given state.
The best model--a Random Forest that learns from a novel variable-length moving
average representation of the feature space--achieves area under the receiver
operating characteristic scores $> .667$ on four of the five states that were
impacted most by terrorism between 2015 and 2018. Our key findings include that
modeling terrorism as a set of independent events, rather than as a continuous
process, is a fruitful approach--especially when the events are sparse and
dissimilar. Additionally, our results highlight the need for localized models
that account for differences between locations. From a machine learning
perspective, we found that the Random Forest model outperformed several deep
models on our multimodal, noisy, and imbalanced data set, thus demonstrating
the efficacy of our novel feature representation method in such a context. We
also show that its predictions are relatively robust to time gaps between
attacks and observed characteristics of the attacks. Finally, we analyze
factors that limit model performance, which include a noisy feature space and
small amount of available data. These contributions provide an important
foundation for the use of machine learning in efforts against terrorism in the
United States and beyond.
- Abstract(参考訳): 米国では毎年数十件のテロ攻撃が相次ぎ、死亡者やその他の重大な被害を招いている。
これらの攻撃をよりよく理解し、緩和する目的に向けて、テロ攻撃が特定の日付と特定の状態において起こるかどうかを予測するために、ローカライズされたニュースデータから学習する一連の機械学習モデルを提案する。
最も優れたモデルであるランダムフォレスト(Random Forest)は、2015年から2018年にかけてテロリズムによって最も影響を受けていた5州のうち4州で、受信機動作特性の下の特徴空間の新たな変動長移動平均表現から .667$ を学習する。我々の重要な発見は、テロリズムを連続的なプロセスではなく、独立したイベントの集合としてモデル化することである。特に、イベントがまばらで異質な場合には、実りあるアプローチである。
さらに,位置の違いを考慮した局所モデルの必要性も強調した。
機械学習の観点から,ランダムフォレストモデルは,マルチモーダル,ノイズ,不均衡のデータセットにおいて,いくつかの深層モデルよりも優れており,このような文脈における特徴表現手法の有効性が実証された。
また,その予測は,攻撃の時間的ギャップと,攻撃の観測特性に対して比較的堅牢であることを示す。
最後に、ノイズの多い機能空間と少量のデータを含むモデル性能を制限する要因を分析した。
これらの貢献は、アメリカ以降のテロに対する取り組みにおいて、機械学習を使用するための重要な基盤を提供する。
関連論文リスト
- Targeted Attacks on Timeseries Forecasting [0.6719751155411076]
本稿では,時系列予測モデルに対する指向性,振幅性,時間的標的攻撃の新たな定式化を提案する。
これらの攻撃は、出力予測の振幅と方向に特定の影響を与える。
実験結果から,時系列モデルに対する標的攻撃が有効であり,統計的類似性の観点からもより強力であることが示唆された。
論文 参考訳(メタデータ) (2023-01-27T06:09:42Z) - Holistic risk assessment of inference attacks in machine learning [4.493526120297708]
本稿では,機械学習モデルに対する異なる推論攻撃の全体的リスク評価を行う。
AlexNet、ResNet18、Simple CNNを含む3つのモデルアーキテクチャを使用して、合計12のターゲットモデルが4つのデータセットでトレーニングされている。
論文 参考訳(メタデータ) (2022-12-15T08:14:18Z) - Membership-Doctor: Comprehensive Assessment of Membership Inference
Against Machine Learning Models [11.842337448801066]
本稿では,様々なメンバーシップ推論攻撃と防衛の大規模測定を行う。
脅威モデル(例えば、同一構造や、シャドーモデルとターゲットモデルとの同一分布)のいくつかの仮定は不要である。
また、実験室のデータセットではなく、インターネットから収集された実世界のデータに対する攻撃を最初に実施しました。
論文 参考訳(メタデータ) (2022-08-22T17:00:53Z) - Spatio-temporal extreme event modeling of terror insurgencies [0.7874708385247353]
本稿では,不均一な強度をトリガー関数として記述した攻撃に対する自己励振モデルを提案する。
このモデルのパラメータを推定することにより、攻撃が起こる可能性のある特定の時空領域に焦点を当てる。
我々は,2019-2021年の攻撃の強さを予測できることを示す。
論文 参考訳(メタデータ) (2021-10-15T20:50:24Z) - Towards Adversarial Patch Analysis and Certified Defense against Crowd
Counting [61.99564267735242]
安全クリティカルな監視システムの重要性から、群衆のカウントは多くの注目を集めています。
近年の研究では、ディープニューラルネットワーク(DNN)の手法が敵の攻撃に弱いことが示されている。
群衆カウントモデルのロバスト性を評価するために,Momentumを用いた攻撃戦略としてAdversarial Patch Attackを提案する。
論文 参考訳(メタデータ) (2021-04-22T05:10:55Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
機械学習(ML)モデルに対する推論攻撃により、敵はトレーニングデータやモデルパラメータなどを学ぶことができる。
私たちは、メンバシップ推論、モデル反転、属性推論、モデル盗難の4つの攻撃に集中しています。
私たちの分析では、MLモデルオーナがモデルをデプロイするリスクを評価することができる、モジュール化された再使用可能なソフトウェアであるML-Doctorに依存しています。
論文 参考訳(メタデータ) (2021-02-04T11:35:13Z) - Knowledge-Enriched Distributional Model Inversion Attacks [49.43828150561947]
モデルインバージョン(MI)攻撃は、モデルパラメータからトレーニングデータを再構成することを目的としている。
本稿では,パブリックデータからプライベートモデルに対する攻撃を行うのに役立つ知識を抽出する,新しい反転型GANを提案する。
実験の結果,これらの手法を組み合わせることで,最先端MI攻撃の成功率を150%向上させることができることがわかった。
論文 参考訳(メタデータ) (2020-10-08T16:20:48Z) - Learning to Attack: Towards Textual Adversarial Attacking in Real-world
Situations [81.82518920087175]
敵攻撃は、敵の例でディープニューラルネットワークを騙すことを目的としている。
本稿では、攻撃履歴から学習し、より効率的に攻撃を開始することができる強化学習に基づく攻撃モデルを提案する。
論文 参考訳(メタデータ) (2020-09-19T09:12:24Z) - Sampling Attacks: Amplification of Membership Inference Attacks by
Repeated Queries [74.59376038272661]
本手法は,他の標準メンバーシップ相手と異なり,被害者モデルのスコアにアクセスできないような厳格な制限の下で動作可能な,新しいメンバーシップ推論手法であるサンプリングアタックを導入する。
ラベルのみを公開している被害者モデルでは,攻撃のサンプリングが引き続き可能であり,攻撃者はその性能の最大100%を回復できることを示す。
防衛においては,被害者モデルのトレーニング中の勾配摂動と予測時の出力摂動の形式で差分プライバシーを選択する。
論文 参考訳(メタデータ) (2020-09-01T12:54:54Z) - Adversarial Fooling Beyond "Flipping the Label" [54.23547006072598]
CNNは、多くの重要なタスクにおいて、人間に近いか、人間のパフォーマンスよりも優れていることを示す。
これらの攻撃は、実際の展開において潜在的に危険である。
異なるCNNアーキテクチャの集合に対するいくつかの重要な敵攻撃を包括的に分析する。
論文 参考訳(メタデータ) (2020-04-27T13:21:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。