Quantum key distribution surpassing the repeaterless rate-transmittance
bound without global phase locking
- URL: http://arxiv.org/abs/2201.04300v2
- Date: Sun, 30 Jan 2022 21:39:38 GMT
- Title: Quantum key distribution surpassing the repeaterless rate-transmittance
bound without global phase locking
- Authors: Pei Zeng, Hongyi Zhou, Weijie Wu and Xiongfeng Ma
- Abstract summary: We propose a mode-pairing measurement-device-independent quantum key distribution scheme.
It can achieve a key rate of $R=O(sqrteta)$ without global phase locking when the local phase fluctuation is mild.
- Score: 0.5857929080874287
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum key distribution -- the establishment of information-theoretically
secure keys based on quantum physics -- is mainly limited by its practical
performance, which is characterised by the dependence of the key rate on the
channel transmittance $R(\eta)$. Recently, schemes based on single-photon
interference have been proposed to improve the key rate to $R=O(\sqrt{\eta})$
by overcoming the point-to-point secret key capacity bound with
interferometers. Unfortunately, all of these schemes require challenging global
phase locking to realise a stable long-arm single-photon interferometer with a
precision of approximately 100 nm over fibres that are hundreds of kilometres
long. Aiming to address this problem, we propose a mode-pairing
measurement-device-independent quantum key distribution scheme in which the
encoded key bits and bases are determined during data post-processing. Using
conventional second-order interference, this scheme can achieve a key rate of
$R=O(\sqrt{\eta})$ without global phase locking when the local phase
fluctuation is mild. We expect this high-performance scheme to be
ready-to-implement with off-the-shelf optical devices.
Related papers
- Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - Secret key rate bounds for quantum key distribution with non-uniform
phase randomization [0.0]
Decoy-state quantum key distribution (QKD) is undoubtedly the most efficient solution to handle multi-photon signals emitted by laser sources.
It provides the same secret key rate scaling as ideal single-photon sources.
It requires, however, that the phase of each emitted pulse is uniformly random.
arXiv Detail & Related papers (2023-04-07T09:51:13Z) - Dead-time optimization to increase secure distance range in prepare and
measure quantum key distribution protocols [0.0]
We introduce an effective analytic model, including dead-time and afterpulsing corrections.
This model is useful to evaluate the performance of prepare and measure quantum key distribution protocols.
arXiv Detail & Related papers (2023-03-24T01:50:24Z) - Quantum Key Distribution over 100 km underwater optical fiber assisted
by a Fast-Gated Single-Photon Detector [44.07851469168589]
In this work, we implement a quantum key distribution link between Sicily (Italy) and Malta.
The performances of a standard commercial SPAD have been compared with the results achieved with a new prototype of fast-gated System in a Package (SiP) SPAD.
The SiP detector has shown to be able to accomplish a fourteen times higher key rate compared with the commercial device over the channel showing 20 dB of losses.
arXiv Detail & Related papers (2023-03-02T18:07:31Z) - Quantum Key Distribution Using a Quantum Emitter in Hexagonal Boron
Nitride [48.97025221755422]
We demonstrate a room temperature, discrete-variable quantum key distribution system using a bright single photon source in hexagonal-boron nitride.
We have generated keys with one million bits length, and demonstrated a secret key of approximately 70,000 bits, at a quantum bit error rate of 6%.
Our work demonstrates the first proof of concept finite-key BB84 QKD system realised with hBN defects.
arXiv Detail & Related papers (2023-02-13T09:38:51Z) - Twin-field quantum key distribution without phase locking [18.013181607967322]
We show an approach to recover the single-photon interference pattern and realize TF-QKD emphwithout phase locking.
Our work provides a scalable and practical solution to TF-QKD, thus representing an important step towards its wide applications.
arXiv Detail & Related papers (2022-12-08T15:03:12Z) - Single-emitter quantum key distribution over 175 km of fiber with
optimised finite key rates [45.82374977939355]
We perform fibre-based quantum key distribution with a quantum dot frequency-converted to telecom wavelength.
We demonstrate positive key rates up to 175 km in the regime.
This result represents major progress towards the feasibility of long-distance single-emitter QKD networks.
arXiv Detail & Related papers (2022-09-07T18:03:36Z) - Optimised Multithreaded CV-QKD Reconciliation for Global Quantum
Networks [3.4519649635864584]
Quantum Key Distribution system requires estimation of quantum channel characteristics and extraction of secure key bits.
On standard processors, it can take several hours to reconcile the required number of quantum signals.
New solution results in a significant increase in the final key rate relative to non-optimised reconciliation.
arXiv Detail & Related papers (2021-08-19T00:43:07Z) - Towards fully-fledged quantum and classical communication over deployed
fiber with up-conversion module [47.187609203210705]
We propose and demonstrate a new method, based on up-conversion assisted receiver, for co-propagating classical light and QKD signals.
Our proposal exhibits higher tolerance for noise in comparison to the standard receiver, thus enabling the distribution of secret keys in the condition of 4 dB-higher classical power.
arXiv Detail & Related papers (2021-06-09T13:52:27Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Coherent phase transfer for real-world twin-field quantum key
distribution [0.0]
We develop a solution for the simultaneous key streaming and channel length control, and demonstrate it on a 206 km field-deployed fiber with 65 dB loss.
Our technique reduces the quantum-bit-error-rate contributed by channel length variations to 1%, representing an effective solution for real-world quantum communications.
arXiv Detail & Related papers (2020-12-30T15:40:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.