Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry
- URL: http://arxiv.org/abs/2309.14426v3
- Date: Wed, 8 May 2024 08:03:36 GMT
- Title: Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry
- Authors: Gregor Janson, Alexander Friedrich, Richard Lopp,
- Abstract summary: We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
- Score: 45.73541813564926
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Quantum-clock interferometry has been suggested as a quantum probe to test the universality of free fall (UFF) and the universality of gravitational redshift (UGR). In typical experimental schemes it seems advantageous to employ Doppler-free E1-M1 transitions which have so far been investigated in quantum gases at rest. Here, we consider the fully quantized atomic degrees of freedom and study the interplay of the quantum center-of-mass (COM) $-$ that can become delocalized $-$ together with the internal clock transitions. In particular, we derive a model for finite-time E1-M1 transitions with atomic intern-extern coupling and arbitrary position-dependent laser intensities. We further provide generalizations to the ideal expressions for perturbed recoilless clock pulses. Finally, we show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields for a sufficiently small quantum delocalization of the atomic COM.
Related papers
- Non-resonant electric quantum control of individual on-surface spins [41.94295877935867]
Quantum control techniques play an important role in manipulating and harnessing the properties of different quantum systems.
We propose to achieve quantum control over a single on-surface atomic spin using Landau-Zener-St"uckelberg-Majorana (LZSM) interferometry.
arXiv Detail & Related papers (2024-04-29T18:23:30Z) - Universal quantum operations and ancilla-based readout for tweezer clocks [3.2810235099960297]
We show universal quantum operations and ancilla-based readout for ultranarrow optical transitions of neutral atoms.
Our work lays the foundation for hybrid processor-clock devices with neutral atoms and points to a future of practical applications for quantum processors linked with quantum sensors.
arXiv Detail & Related papers (2024-02-25T23:35:36Z) - Enhanced optomechanical interaction in the unbalanced interferometer [40.96261204117952]
Quantum optomechanical systems enable the study of fundamental questions on quantum nature of massive objects.
Here we propose a modification of the Michelson-Sagnac interferometer, which allows to boost the optomechanical coupling strength.
arXiv Detail & Related papers (2023-05-11T14:24:34Z) - Quantum-enhanced sensing on an optical transition via emergent
collective quantum correlations [0.0]
We show how to harness scalable entanglement in an optical transition using 1D chains of up to 51 ions with state-dependent interactions that decay as a power-law function of the ion separation.
We demonstrate this in a Ramsey-type interferometer, where we reduce the measurement uncertainty by $-3.2 pm 0.5$ dB below the standard quantum limit for N = 51 ions.
arXiv Detail & Related papers (2023-03-19T15:41:32Z) - Realizing spin squeezing with Rydberg interactions in a programmable
optical clock [0.6376404422444008]
We demonstrate spin squeezing in a neutral-atom optical clock based on a programmable array of interacting optical qubits.
We observe a fractional stability of $1.087(1)times 10-15$ at one-second averaging time, which is 1.94(1) dB below the standard quantum limit.
The realization of this spin-squeezing protocol in a programmable atom-array clock opens the door to a wide range of quantum-information inspired techniques.
arXiv Detail & Related papers (2023-03-14T17:11:33Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Time-resolved Hanbury Brown-Twiss interferometry of on-chip biphoton
frequency combs using Vernier phase modulation [0.0]
Biphoton frequency combs (BFCs) are promising quantum sources for large-scale and high-dimensional quantum information and networking systems.
Measurement of the temporal auto-correlation function of the unheralded signal or idler photons comprising the BFC is a key tool for characterizing their spectral purity.
We propose a scheme to circumvent this challenge through electro-optic phase modulation.
arXiv Detail & Related papers (2022-10-11T17:08:22Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Measuring gravitational time dilation with delocalized quantum
superpositions [0.0]
We present an interferometry scheme employing group-II-type atoms, such as Sr or Yb, capable of measuring the gravitational time dilation.
The scheme relies on very simple atom optics for which high-diffraction efficiencies can be achieved with mild requirements on laser power.
Remarkably, the recently commissioned VLBAI facility in Hannover, a 10-meter atomic fountain that can simultaneously operate Yb and Rb atoms, meets all the requirements for a successful experimental implementation.
arXiv Detail & Related papers (2020-10-21T17:23:39Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.