Predicting Alzheimer's Disease Using 3DMgNet
- URL: http://arxiv.org/abs/2201.04370v1
- Date: Wed, 12 Jan 2022 09:08:08 GMT
- Title: Predicting Alzheimer's Disease Using 3DMgNet
- Authors: Yelu Gao, Huang Huang, Lian Zhang
- Abstract summary: 3DMgNet is a unified framework of multigrid and convolutional neural network to diagnose Alzheimer's disease (AD)
The model achieved 92.133% accuracy for AD vs NC classification and significantly reduced the model parameters.
- Score: 2.97983501982132
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Alzheimer's disease (AD) is an irreversible neurode generative disease of the
brain.The disease may causes memory loss, difficulty communicating and
disorientation. For the diagnosis of Alzheimer's disease, a series of scales
are often needed to evaluate the diagnosis clinically, which not only increases
the workload of doctors, but also makes the results of diagnosis highly
subjective. Therefore, for Alzheimer's disease, imaging means to find early
diagnostic markers has become a top priority.
In this paper, we propose a novel 3DMgNet architecture which is a unified
framework of multigrid and convolutional neural network to diagnose Alzheimer's
disease (AD). The model is trained using an open dataset (ADNI dataset) and
then test with a smaller dataset of ours. Finally, the model achieved 92.133%
accuracy for AD vs NC classification and significantly reduced the model
parameters.
Related papers
- Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
Alzheimer's Disease (AD) detection has emerged as a promising research area that employs machine learning classification models.
We identify within-class variation as a critical challenge in AD detection: individuals with AD exhibit a spectrum of cognitive impairments.
We propose two novel methods: Soft Target Distillation (SoTD) and Instance-level Re-balancing (InRe), targeting two problems respectively.
arXiv Detail & Related papers (2024-09-22T02:06:05Z) - AXIAL: Attention-based eXplainability for Interpretable Alzheimer's Localized Diagnosis using 2D CNNs on 3D MRI brain scans [43.06293430764841]
This study presents an innovative method for Alzheimer's disease diagnosis using 3D MRI designed to enhance the explainability of model decisions.
Our approach adopts a soft attention mechanism, enabling 2D CNNs to extract volumetric representations.
With voxel-level precision, our method identified which specific areas are being paid attention to, identifying these predominant brain regions.
arXiv Detail & Related papers (2024-07-02T16:44:00Z) - Introducing an ensemble method for the early detection of Alzheimer's disease through the analysis of PET scan images [0.8192907805418583]
This study delves into the challenging task of classifying Alzheimer's disease into four distinct groups: control normal (CN), progressive mild cognitive impairment (pMCI), stable mild cognitive impairment (sMCI), and Alzheimer's disease (AD)
Several deep-learning and traditional machine-learning models have been used to detect Alzheimer's disease.
The results show that using deep-learning models to tell the difference between MCI patients gives an overall average accuracy of 93.13% and an AUC of 94.4%.
arXiv Detail & Related papers (2024-03-17T16:12:50Z) - Vision Transformers and Bi-LSTM for Alzheimer's Disease Diagnosis from
3D MRI [0.0]
Alzheimer's disease (AD) can be treated and managed if it is diagnosed early.
In this study, we suggested using the Visual Transformer (ViT) and bi-LSTM to process MRI images for diagnosing Alzheimer's disease.
The proposed method performs well in terms of accuracy, precision, F-score, and recall for the diagnosis of AD.
arXiv Detail & Related papers (2024-01-06T06:11:03Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Deep Multi-Branch CNN Architecture for Early Alzheimer's Detection from
Brain MRIs [0.0]
Alzheimer's disease (AD) is a neuro-degenerative disease that can cause dementia and result severe reduction in brain function inhibiting simple tasks.
We propose a deep Convolutional Neural Network (CNN) architecture consisting of 7,866,819 parameters.
This model can predict whether a patient is non-demented, mild-demented, or moderately demented with a 99.05% three class accuracy.
arXiv Detail & Related papers (2022-10-22T02:25:07Z) - Automatic Assessment of Alzheimer's Disease Diagnosis Based on Deep
Learning Techniques [111.165389441988]
This work is to develop a system that automatically detects the presence of the disease in sagittal magnetic resonance images (MRI)
Although sagittal-plane MRIs are not commonly used, this work proved that they were, at least, as effective as MRI from other planes at identifying AD in early stages.
This study proved that DL models could be built in these fields, whereas TL is an essential tool for completing the task with fewer examples.
arXiv Detail & Related papers (2021-05-18T11:37:57Z) - Deep Convolutional Neural Network based Classification of Alzheimer's
Disease using MRI data [8.609787905151563]
Alzheimer's disease (AD) is a progressive and incurable neurodegenerative disease which destroys brain cells and causes loss to patient's memory.
In this paper, we have proposed a smart and accurate way of diagnosing AD based on a two-dimensional deep convolutional neural network (2D-DCNN) using imbalanced three-dimensional MRI dataset.
The model classifies MRI into three categories: AD, mild cognitive impairment, and normal control: and has achieved 99.89% classification accuracy with imbalanced classes.
arXiv Detail & Related papers (2021-01-08T06:51:08Z) - Preclinical Stage Alzheimer's Disease Detection Using Magnetic Resonance
Image Scans [10.120835953459247]
Alzheimer's disease is one of the diseases that mostly affects older people without being a part of aging.
It is important to detect Alzheimer's disease in early stages so that cognitive functioning would be improved by medication and training.
arXiv Detail & Related papers (2020-11-28T14:25:30Z) - Multimodal Inductive Transfer Learning for Detection of Alzheimer's
Dementia and its Severity [39.57255380551913]
We present a novel architecture that leverages acoustic, cognitive, and linguistic features to form a multimodal ensemble system.
It uses specialized artificial neural networks with temporal characteristics to detect Alzheimer's dementia (AD) and its severity.
Our system achieves state-of-the-art test accuracy, precision, recall, and F1-score of 83.3% each for AD classification, and state-of-the-art test root mean squared error (RMSE) of 4.60 for MMSE score regression.
arXiv Detail & Related papers (2020-08-30T21:47:26Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.