Interactive Data Analysis with Next-step Natural Language Query
Recommendation
- URL: http://arxiv.org/abs/2201.04868v1
- Date: Thu, 13 Jan 2022 10:20:06 GMT
- Title: Interactive Data Analysis with Next-step Natural Language Query
Recommendation
- Authors: Xingbo Wang, Furui Cheng, Yong Wang, Ke Xu, Jiang Long, Hong Lu and
Huamin Qu
- Abstract summary: We develop an NLI with a step-wise query recommendation module to assist users in choosing appropriate next-step exploration actions.
The system helps users organize query histories and results into a dashboard to communicate the discovered data insights.
- Score: 34.264322423228556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Natural language interfaces (NLIs) provide users with a convenient way to
interactively analyze data through natural language queries. Nevertheless,
interactive data analysis is a demanding process, especially for novice data
analysts. When exploring large and complex datasets from different domains,
data analysts do not necessarily have sufficient knowledge about data and
application domains. It makes them unable to efficiently elicit a series of
queries and extensively derive desirable data insights. In this paper, we
develop an NLI with a step-wise query recommendation module to assist users in
choosing appropriate next-step exploration actions. The system adopts a
data-driven approach to generate step-wise semantically relevant and
context-aware query suggestions for application domains of users' interest
based on their query logs. Also, the system helps users organize query
histories and results into a dashboard to communicate the discovered data
insights. With a comparative user study, we show that our system can facilitate
a more effective and systematic data analysis process than a baseline without
the recommendation module.
Related papers
- LLM-assisted Explicit and Implicit Multi-interest Learning Framework for Sequential Recommendation [50.98046887582194]
We propose an explicit and implicit multi-interest learning framework to model user interests on two levels: behavior and semantics.
The proposed EIMF framework effectively and efficiently combines small models with LLM to improve the accuracy of multi-interest modeling.
arXiv Detail & Related papers (2024-11-14T13:00:23Z) - Towards Enhancing Linked Data Retrieval in Conversational UIs using Large Language Models [1.3980986259786221]
This paper examines the integration of Large Language Models (LLMs) within existing systems.
By leveraging the advanced natural language understanding capabilities of LLMs, our method improves RDF entity extraction within web systems.
The evaluation of this methodology shows a marked enhancement in system expressivity and the accuracy of responses to user queries.
arXiv Detail & Related papers (2024-09-24T16:31:33Z) - Natural Language Query Engine for Relational Databases using Generative AI [0.0]
This article introduces an innovative solution that leverages Generative AI to bridge the gap, enabling users to query databases using natural language.
Our approach automatically translates natural language queries intosql, ensuring both syntactic and semantic correctness, while also generating clear, natural language responses from the retrieved data.
By streamlining the interaction between users and databases, this method empowers individuals without technical expertise to engage with data directly and efficiently, democratizing access to valuable insights and enhancing productivity.
arXiv Detail & Related papers (2024-09-23T01:07:02Z) - UQE: A Query Engine for Unstructured Databases [71.49289088592842]
We investigate the potential of Large Language Models to enable unstructured data analytics.
We propose a new Universal Query Engine (UQE) that directly interrogates and draws insights from unstructured data collections.
arXiv Detail & Related papers (2024-06-23T06:58:55Z) - An Interactive Query Generation Assistant using LLM-based Prompt
Modification and User Feedback [9.461978375200102]
The proposed interface is a novel search interface which supports automatic and interactive query generation over a mono-linguial or multi-lingual document collection.
The interface enables the users to refine the queries generated by different LLMs, to provide feedback on the retrieved documents or passages, and is able to incorporate the users' feedback as prompts to generate more effective queries.
arXiv Detail & Related papers (2023-11-19T04:42:24Z) - AUGUST: an Automatic Generation Understudy for Synthesizing
Conversational Recommendation Datasets [56.052803235932686]
We propose a novel automatic dataset synthesis approach that can generate both large-scale and high-quality recommendation dialogues.
In doing so, we exploit: (i) rich personalized user profiles from traditional recommendation datasets, (ii) rich external knowledge from knowledge graphs, and (iii) the conversation ability contained in human-to-human conversational recommendation datasets.
arXiv Detail & Related papers (2023-06-16T05:27:14Z) - Demonstration of InsightPilot: An LLM-Empowered Automated Data
Exploration System [48.62158108517576]
We introduce InsightPilot, an automated data exploration system designed to simplify the data exploration process.
InsightPilot automatically selects appropriate analysis intents, such as understanding, summarizing, and explaining.
In brief, an IQuery is an abstraction and automation of data analysis operations, which mimics the approach of data analysts.
arXiv Detail & Related papers (2023-04-02T07:27:49Z) - Analytical Engines With Context-Rich Processing: Towards Efficient
Next-Generation Analytics [12.317930859033149]
We envision an analytical engine co-optimized with components that enable context-rich analysis.
We aim for a holistic pipeline cost- and rule-based optimization across relational and model-based operators.
arXiv Detail & Related papers (2022-12-14T21:46:33Z) - Graph Enhanced BERT for Query Understanding [55.90334539898102]
query understanding plays a key role in exploring users' search intents and facilitating users to locate their most desired information.
In recent years, pre-trained language models (PLMs) have advanced various natural language processing tasks.
We propose a novel graph-enhanced pre-training framework, GE-BERT, which can leverage both query content and the query graph.
arXiv Detail & Related papers (2022-04-03T16:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.