論文の概要: Improving VAE based molecular representations for compound property
prediction
- arxiv url: http://arxiv.org/abs/2201.04929v1
- Date: Thu, 13 Jan 2022 12:57:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-14 20:23:46.303805
- Title: Improving VAE based molecular representations for compound property
prediction
- Title(参考訳): 複合特性予測のためのvaeに基づく分子表現の改善
- Authors: A. Tevosyan (1 and 2), L. Khondkaryan (1), H. Khachatrian (2 and 3),
G. Tadevosyan (1), L. Apresyan (1), N. Babayan (1 and 3), H. Stopper (4), Z.
Navoyan (5) ((1) Institute of Molecular Biology NAS RA Armenia, (2) YerevaNN
Armenia, (3) Yerevan State University Armenia, (4) Institute of Pharmacology
and Toxicology University of W\"urzburg Germany, (5) Toxometris.ai)
- Abstract要約: 機械学習モデルの化学特性予測性能を簡易に向上する手法を提案する。
本稿では,プロパティ予測モデルの性能と,プロパティ予測データセットとより大きなラベル付きデータセットとの距離の関係を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Collecting labeled data for many important tasks in chemoinformatics is time
consuming and requires expensive experiments. In recent years, machine learning
has been used to learn rich representations of molecules using large scale
unlabeled molecular datasets and transfer the knowledge to solve the more
challenging tasks with limited datasets. Variational autoencoders are one of
the tools that have been proposed to perform the transfer for both chemical
property prediction and molecular generation tasks. In this work we propose a
simple method to improve chemical property prediction performance of machine
learning models by incorporating additional information on correlated molecular
descriptors in the representations learned by variational autoencoders. We
verify the method on three property prediction asks. We explore the impact of
the number of incorporated descriptors, correlation between the descriptors and
the target properties, sizes of the datasets etc. Finally, we show the relation
between the performance of property prediction models and the distance between
property prediction dataset and the larger unlabeled dataset in the
representation space.
- Abstract(参考訳): 化学情報学における重要なタスクのためのラベル付きデータの収集には時間がかかり、高価な実験が必要となる。
近年、機械学習は大規模な未ラベル分子データセットを用いて分子の豊かな表現を学習し、限られたデータセットでより困難なタスクを解決するために知識を伝達するために使われてきた。
変分オートエンコーダは、化学特性予測と分子生成タスクの両方の転送を実行するために提案されたツールの1つである。
本研究では,可変オートエンコーダによって学習される表現における相関分子記述子の追加情報を組み込むことにより,機械学習モデルの化学特性予測性能を向上させるための簡便な手法を提案する。
提案手法を3つの特性予測要求で検証する。
組み込まれた記述子数の影響、記述子と対象プロパティの相関、データセットのサイズ等について検討する。
最後に、表現空間における特性予測モデルの性能と特性予測データセットとより大きなラベル付きデータセットとの間の距離との関係を示す。
関連論文リスト
- Physical Consistency Bridges Heterogeneous Data in Molecular Multi-Task Learning [79.75718786477638]
我々は、それらを接続する物理法則が存在する分子的タスクの専門性を生かし、整合性トレーニングアプローチを設計する。
より正確なエネルギーデータにより、構造予測の精度が向上することを示した。
また、整合性トレーニングは、構造予測を改善するために、力と非平衡構造データを直接活用できることがわかった。
論文 参考訳(メタデータ) (2024-10-14T03:11:33Z) - MoleculeCLA: Rethinking Molecular Benchmark via Computational Ligand-Target Binding Analysis [18.940529282539842]
約140,000個の小分子からなる大規模かつ高精度な分子表現データセットを構築した。
我々のデータセットは、モデルの開発と設計をガイドするために、重要な物理化学的解釈性を提供します。
このデータセットは、分子表現学習のためのより正確で信頼性の高いベンチマークとして機能すると考えています。
論文 参考訳(メタデータ) (2024-06-13T02:50:23Z) - Unsupervised Learning of Molecular Embeddings for Enhanced Clustering
and Emergent Properties for Chemical Compounds [2.6803933204362336]
SMILESデータに基づく化合物の検出とクラスタリングのための様々な手法を提案する。
埋め込みデータを用いて化合物のグラフィカルな構造を解析し, しきい値を満たすためにベクトル探索を用いる。
また、GPT3.5を用いたベクトルデータベースに格納された自然言語記述埋め込みを用い、ベースモデルより優れていた。
論文 参考訳(メタデータ) (2023-10-25T18:00:24Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - Tyger: Task-Type-Generic Active Learning for Molecular Property
Prediction [121.97742787439546]
分子の性質を正確に予測する方法は、AIによる薬物発見において重要な問題である。
アノテーションのコストを削減するため,注釈付けのための最も代表的で情報性の高いデータのみを選択するために,深層能動学習法が開発された。
本稿では,異なるタイプの学習タスクを統一的に処理できるタスク型汎用能動的学習フレームワーク(Tyger)を提案する。
論文 参考訳(メタデータ) (2022-05-23T12:56:12Z) - Do Large Scale Molecular Language Representations Capture Important
Structural Information? [31.76876206167457]
本稿では,MoLFormerと呼ばれる効率的なトランスフォーマーエンコーダモデルのトレーニングにより得られた分子埋め込みについて述べる。
実験の結果,グラフベースおよび指紋ベースによる教師付き学習ベースラインと比較して,学習された分子表現が競合的に機能することが確認された。
論文 参考訳(メタデータ) (2021-06-17T14:33:55Z) - Few-Shot Graph Learning for Molecular Property Prediction [46.60746023179724]
分子特性予測の新しいモデルであるMeta-MGNNを提案する。
ラベルのない分子情報を利用するため、Meta-MGNNはさらに分子構造、属性ベースの自己監視モジュール、および自己注意のタスクウェイトを組み込む。
2つの公開マルチプロパティデータセットに関する広範な実験は、Meta-MGNNがさまざまな最先端のメソッドを上回っていることを示しています。
論文 参考訳(メタデータ) (2021-02-16T01:55:34Z) - Advanced Graph and Sequence Neural Networks for Molecular Property
Prediction and Drug Discovery [53.00288162642151]
計算モデルや分子表現にまたがる包括的な機械学習ツール群であるMoleculeKitを開発した。
これらの表現に基づいて構築されたMoeculeKitには、ディープラーニングと、グラフとシーケンスデータのための従来の機械学習方法の両方が含まれている。
オンラインおよびオフラインの抗生物質発見と分子特性予測のタスクの結果から、MoneculeKitは以前の方法よりも一貫した改善を実現していることがわかる。
論文 参考訳(メタデータ) (2020-12-02T02:09:31Z) - Predicting Chemical Properties using Self-Attention Multi-task Learning
based on SMILES Representation [0.0]
本研究では,変圧器変圧器モデルの構造的差異について検討し,新しい自己注意モデルを提案する。
不均衡な化学データセットを用いたマルチタスク学習環境において,自己認識モジュールの表現学習性能を評価した。
論文 参考訳(メタデータ) (2020-10-19T09:46:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。