Single-mode Quantum Non-Gaussian Light from Warm Atoms
- URL: http://arxiv.org/abs/2201.05366v1
- Date: Fri, 14 Jan 2022 10:07:01 GMT
- Title: Single-mode Quantum Non-Gaussian Light from Warm Atoms
- Authors: Jarom\'ir Mika, Luk\'a\v{s} Lachman, Tom\'a\v{s} Lamich, Radim Filip,
Luk\'a\v{s} Slodi\v{c}ka
- Abstract summary: We show the generation of light with provably QNG features from a tunable warm atomic ensemble in a single-mode regime.
Despite its high sensitivity to any excess noise, a direct observability of heralded QNG light could be achieved.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The distributed quantum information processing and hybridization of quantum
platforms raises increasing demands on the quality of light-matter interaction
and realization of efficient quantum interfaces. This becomes particularly
challenging for needed states possessing fundamental quantum non-Gaussian (QNG)
aspects. They correspond to paramount resources in most potent applications of
quantum technologies. We demonstrate the generation of light with provably QNG
features from a tunable warm atomic ensemble in a single-mode regime. The light
is generated in a spontaneous four-wave mixing process in the presence of
decoherence effects caused by a large atomic thermal motion. Despite its high
sensitivity to any excess noise, a direct observability of heralded QNG light
could be achieved due to a combination of a fast resonant excitation, large
spectral bandwidth, and a low absorption loss of resonant photons guaranteed by
the source geometry.
Related papers
- Cavity-Quantum Electrodynamics with Moiré Flatband Photonic Crystals [35.119260614523256]
A quantum dot can be tuned by a factor of 40, ranging from 42 ps to 1692 ps, which is attributed to strong Purcell enhancement and Purcell inhibition effects.
Our findings pave the way for moir'e flatband cavity-enhanced quantum light sources, quantum optical switches, and quantum nodes for quantum internet applications.
arXiv Detail & Related papers (2024-11-25T18:52:11Z) - The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Robust Single-Photon Generation for Quantum Information Enabled by Stimulated Adiabatic Rapid Passage [0.0]
We present a robust scheme for the coherent generation of indistinguishable single-photon states with very low photon number coherence.
Our novel approach combines the advantages of adiabatic rapid passage (ARP) and stimulated two-photon excitation (sTPE)
We demonstrate robust quantum light generation while maintaining the prime quantum-optical quality of the emitted light state.
arXiv Detail & Related papers (2024-09-21T02:12:16Z) - Temperature-independent almost perfect photon entanglement from quantum
dots via the SUPER scheme [0.0]
Entangled photon pairs are essential for quantum communication technology.
quantum dots are ready to be used as entangled photon pair sources in applications requiring high degrees of entanglement up to temperatures of about $80,$K.
arXiv Detail & Related papers (2023-07-01T11:25:35Z) - A source of entangled photons based on a cavity-enhanced and strain-tuned GaAs quantum dot [0.03829341169189996]
We develop a novel device consisting of a quantum dot embedded in a circular Bragg resonator, in turn, integrated onto a micromachined piezoelectric actuator.
The resonator engineers the light-matter interaction to empower extraction efficiencies up to 0.69(4).
The actuator manipulates strain fields that tune the quantum dot for the generation of entangled photons with corrected fidelities to a maximally entangled state up to 0.96(1).
arXiv Detail & Related papers (2022-12-23T18:06:32Z) - Fully on-chip photonic turnkey quantum source for entangled qubit/qudit
state generation [0.0]
Integrated photonics has recently become a leading platform for the realization and processing of optical entangled quantum states in chip formats.
Here we demonstrate a fully integrated quantum light source, which overcomes these challenges through the combined integration of a laser cavity.
The hybrid quantum source employs an electrically-pumped InP gain section and a Si$_3$N$_4$ low-loss microring filter system.
arXiv Detail & Related papers (2022-06-17T12:14:21Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Phonon dephasing and spectral diffusion of quantum emitters in hexagonal
Boron Nitride [52.915502553459724]
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics.
We study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-25T05:56:18Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
Hybrid quantum photonics with SiV$-$-containing nanodiamonds inside one hole of a one-dimensional, free-standing, Si$_3$N$_4$-based photonic crystal cavity is presented.
The resulting photon flux is increased by more than a factor of 14 as compared to free-space.
Results mark an important step to realize quantum network nodes based on hybrid quantum photonics with SiV$-$- center in nanodiamonds.
arXiv Detail & Related papers (2020-12-21T17:22:25Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.