Multi-head Temporal Attention-Augmented Bilinear Network for Financial
time series prediction
- URL: http://arxiv.org/abs/2201.05459v1
- Date: Fri, 14 Jan 2022 14:02:19 GMT
- Title: Multi-head Temporal Attention-Augmented Bilinear Network for Financial
time series prediction
- Authors: Mostafa Shabani, Dat Thanh Tran, Martin Magris, Juho Kanniainen,
Alexandros Iosifidis
- Abstract summary: We propose a neural layer based on the ideas of temporal attention and multi-head attention to extend the capability of the underlying neural network.
The effectiveness of our approach is validated using large-scale limit-order book market data.
- Score: 77.57991021445959
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Financial time-series forecasting is one of the most challenging domains in
the field of time-series analysis. This is mostly due to the highly
non-stationary and noisy nature of financial time-series data. With progressive
efforts of the community to design specialized neural networks incorporating
prior domain knowledge, many financial analysis and forecasting problems have
been successfully tackled. The temporal attention mechanism is a neural layer
design that recently gained popularity due to its ability to focus on important
temporal events. In this paper, we propose a neural layer based on the ideas of
temporal attention and multi-head attention to extend the capability of the
underlying neural network in focusing simultaneously on multiple temporal
instances. The effectiveness of our approach is validated using large-scale
limit-order book market data to forecast the direction of mid-price movements.
Our experiments show that the use of multi-head temporal attention modules
leads to enhanced prediction performances compared to baseline models.
Related papers
- SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - A Generic Approach to Integrating Time into Spatial-Temporal Forecasting
via Conditional Neural Fields [1.7661845949769062]
This paper presents a general approach to integrating the time component into forecasting models.
The main idea is to employ conditional neural fields to represent the auxiliary features extracted from the time component.
Experiments on road traffic and cellular network traffic datasets prove the effectiveness of the proposed approach.
arXiv Detail & Related papers (2023-05-11T14:20:23Z) - Scalable Spatiotemporal Graph Neural Networks [14.415967477487692]
Graph neural networks (GNNs) are often the core component of the forecasting architecture.
In most pretemporal GNNs, the computational complexity scales up to a quadratic factor with the length of the sequence times the number of links in the graph.
We propose a scalable architecture that exploits an efficient encoding of both temporal and spatial dynamics.
arXiv Detail & Related papers (2022-09-14T09:47:38Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Bilinear Input Normalization for Neural Networks in Financial
Forecasting [101.89872650510074]
We propose a novel data-driven normalization method for deep neural networks that handle high-frequency financial time-series.
The proposed normalization scheme takes into account the bimodal characteristic of financial time-series.
Our experiments, conducted with state-of-the-arts neural networks and high-frequency data, show significant improvements over other normalization techniques.
arXiv Detail & Related papers (2021-09-01T07:52:03Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
Deep learning models have led to significant performance improvements in many problems coming from different domains, including prediction problems of financial time-series data.
The Temporal Attention-Augmented Bilinear network was recently proposed as an efficient and high-performing model for Limit Order Book time-series forecasting.
In this paper, we propose a low-rank tensor approximation of the model to further reduce the number of trainable parameters and increase its speed.
arXiv Detail & Related papers (2021-07-05T10:15:23Z) - Improved Predictive Deep Temporal Neural Networks with Trend Filtering [22.352437268596674]
We propose a new prediction framework based on deep neural networks and a trend filtering.
We reveal that the predictive performance of deep temporal neural networks improves when the training data is temporally processed by a trend filtering.
arXiv Detail & Related papers (2020-10-16T08:29:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.