Diffusion Tensor Estimation with Transformer Neural Networks
- URL: http://arxiv.org/abs/2201.05701v1
- Date: Fri, 14 Jan 2022 22:57:48 GMT
- Title: Diffusion Tensor Estimation with Transformer Neural Networks
- Authors: Davood Karimi and Ali Gholipour
- Abstract summary: We propose a method that can accurately estimate the diffusion tensor from only six diffusion-weighted measurements.
Our method achieves this by learning to exploit the relationships between the diffusion signals and tensors in neighboring voxels.
Our method promises shorter scan times and more reliable assessment of brain white matter, particularly in non-cooperative patients such as neonates and infants.
- Score: 8.219843232619551
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion tensor imaging (DTI) is the most widely used tool for studying
brain white matter development and degeneration. However, standard DTI
estimation methods depend on a large number of high-quality measurements. This
would require long scan times and can be particularly difficult to achieve with
certain patient populations such as neonates. Here, we propose a method that
can accurately estimate the diffusion tensor from only six diffusion-weighted
measurements. Our method achieves this by learning to exploit the relationships
between the diffusion signals and tensors in neighboring voxels. Our model is
based on transformer networks, which represent the state of the art in modeling
the relationship between signals in a sequence. In particular, our model
consists of two such networks. The first network estimates the diffusion tensor
based on the diffusion signals in a neighborhood of voxels. The second network
provides more accurate tensor estimations by learning the relationships between
the diffusion signals as well as the tensors estimated by the first network in
neighboring voxels. Our experiments with three datasets show that our proposed
method achieves highly accurate estimations of the diffusion tensor and is
significantly superior to three competing methods. Estimations produced by our
method with six measurements are comparable with those of standard estimation
methods with 30-88 measurements. Hence, our method promises shorter scan times
and more reliable assessment of brain white matter, particularly in
non-cooperative patients such as neonates and infants.
Related papers
- Analyzing Neural Network-Based Generative Diffusion Models through Convex Optimization [45.72323731094864]
We present a theoretical framework to analyze two-layer neural network-based diffusion models.
We prove that training shallow neural networks for score prediction can be done by solving a single convex program.
Our results provide a precise characterization of what neural network-based diffusion models learn in non-asymptotic settings.
arXiv Detail & Related papers (2024-02-03T00:20:25Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
Entropy and mutual information in neural networks provide rich information on the learning process.
We leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures.
We show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data.
arXiv Detail & Related papers (2023-12-04T01:32:42Z) - Q-Diffusion: Quantizing Diffusion Models [52.978047249670276]
Post-training quantization (PTQ) is considered a go-to compression method for other tasks.
We propose a novel PTQ method specifically tailored towards the unique multi-timestep pipeline and model architecture.
We show that our proposed method is able to quantize full-precision unconditional diffusion models into 4-bit while maintaining comparable performance.
arXiv Detail & Related papers (2023-02-08T19:38:59Z) - Mesh Neural Networks for SE(3)-Equivariant Hemodynamics Estimation on the Artery Wall [13.113110989699571]
We consider the estimation of vector-valued quantities on the wall of three-dimensional geometric artery models.
We employ group equivariant graph convolution in an end-to-end SE(3)-equivariant neural network that operates directly on triangular surface meshes.
We show that our method is powerful enough to accurately predict transient, vector-valued WSS over the cardiac cycle while conditioned on a range of different inflow boundary conditions.
arXiv Detail & Related papers (2022-12-09T18:16:06Z) - Fast Sampling of Diffusion Models via Operator Learning [74.37531458470086]
We use neural operators, an efficient method to solve the probability flow differential equations, to accelerate the sampling process of diffusion models.
Compared to other fast sampling methods that have a sequential nature, we are the first to propose a parallel decoding method.
We show our method achieves state-of-the-art FID of 3.78 for CIFAR-10 and 7.83 for ImageNet-64 in the one-model-evaluation setting.
arXiv Detail & Related papers (2022-11-24T07:30:27Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
Current best practice advocates for a large T to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution.
We show how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward dynamics, followed by a standard reverse diffusion process.
arXiv Detail & Related papers (2022-06-10T15:09:46Z) - Flexible Amortized Variational Inference in qBOLD MRI [56.4324135502282]
Oxygen extraction fraction (OEF) and deoxygenated blood volume (DBV) are more ambiguously determined from the data.
Existing inference methods tend to yield very noisy and underestimated OEF maps, while overestimating DBV.
This work describes a novel probabilistic machine learning approach that can infer plausible distributions of OEF and DBV.
arXiv Detail & Related papers (2022-03-11T10:47:16Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
We study downlink (DL) channel estimation in a Massive multiple-input multiple-output (MIMO) system.
A common approach is to use the mean value as the estimate, motivated by channel hardening.
We propose two novel estimation methods.
arXiv Detail & Related papers (2021-09-06T13:42:32Z) - Multi-fidelity Bayesian Neural Networks: Algorithms and Applications [0.0]
We propose a new class of Bayesian neural networks (BNNs) that can be trained using noisy data of variable fidelity.
We apply them to learn function approximations as well as to solve inverse problems based on partial differential equations (PDEs)
arXiv Detail & Related papers (2020-12-19T02:03:53Z) - Manifold-Aware CycleGAN for High-Resolution Structural-to-DTI Synthesis [8.829738147738222]
We propose a manifold-aware CycleGAN that learns the generation of high-resolution DTI from unpaired T1w images.
Our method is able to generate realistic high-resolution DTI that can be used to compute diffusion-based metrics and potentially run fiber tractography algorithms.
arXiv Detail & Related papers (2020-04-01T00:08:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.