論文の概要: Challenges in COVID-19 Chest X-Ray Classification: Problematic Data or
Ineffective Approaches?
- arxiv url: http://arxiv.org/abs/2201.06052v1
- Date: Sun, 16 Jan 2022 14:12:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-19 15:09:02.906222
- Title: Challenges in COVID-19 Chest X-Ray Classification: Problematic Data or
Ineffective Approaches?
- Title(参考訳): 胸部x線診断の課題 : 問題データか非効率アプローチか?
- Authors: Muhammad Ridzuan, Ameera Ali Bawazir, Ivo Gollini Navarette, Ibrahim
Almakky and Mohammad Yaqub
- Abstract要約: 胸部X線写真から新型コロナウイルスの感染を分類し、検出するための深層学習。
本研究では,データと機械学習の両方の観点から,信頼性の高いAIソリューションを作成する上で直面する課題について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The value of quick, accurate, and confident diagnoses cannot be undermined to
mitigate the effects of COVID-19 infection, particularly for severe cases.
Enormous effort has been put towards developing deep learning methods to
classify and detect COVID-19 infections from chest radiography images. However,
recently some questions have been raised surrounding the clinical viability and
effectiveness of such methods. In this work, we carry out extensive experiments
on a large COVID-19 chest X-ray dataset to investigate the challenges faced
with creating reliable AI solutions from both the data and machine learning
perspectives. Accordingly, we offer an in-depth discussion into the challenges
faced by some widely-used deep learning architectures associated with chest
X-Ray COVID-19 classification. Finally, we include some possible directions and
considerations to improve the performance of the models and the data for use in
clinical settings.
- Abstract(参考訳): 迅速で正確で自信のある診断の価値は、特に重篤な症例に対する新型コロナウイルス感染の影響を軽減するために損なわれない。
胸部X線写真から新型コロナウイルスの感染を分類・検出する深層学習手法の開発に多くの努力が払われている。
しかし,近年,その臨床的有効性や有効性に関する疑問が提起されている。
本研究では,大規模covid-19胸部x線データセットに関する広範な実験を行い,データと機械学習の両方の観点から信頼性の高いaiソリューションを作成する際の課題について検討する。
そこで我々は,胸部x線新型コロナウイルスの分類に関連する深層学習アーキテクチャが直面する課題について,詳細な議論を行う。
最後に, 臨床現場で使用するモデルとデータの性能を向上させるための, 考えられる方向と考慮事項について述べる。
関連論文リスト
- Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
関連疾患に対するラベル付きデータの不足は、正確な診断にとって大きな課題となる。
本稿では,診断エージェントの学習を指導するための事前知識を導入する,新しい深層強化学習フレームワークを提案する。
提案手法の性能はNIHX-ray 14とCheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-06-02T01:46:31Z) - Detection of COVID19 in Chest X-Ray Images Using Transfer Learning [0.0]
本稿では,VGG-16とVGG-19という,最もよく知られた2つのVGGNetアーキテクチャを用いたトランスファーラーニングの概念について検討する。
我々は,複数クラスとバイナリの分類問題において,正のCovid-19インスタンスを識別するために,提案システムの性能を評価するために2つの異なるデータセットを生成した。
論文 参考訳(メタデータ) (2023-04-09T05:02:04Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
新型コロナウイルス(COVID-19)のパンデミック(パンデミック)の間、新型コロナウイルス(COVID-19)の診断のための緊急設定で実施される画像の量は、臨床用CXRの取得が広範囲に及んだ。
公開データセット内の臨床的に取得されたCXRの変動品質は、アルゴリズムのパフォーマンスに大きな影響を及ぼす可能性がある。
我々は、新型コロナウイルスの胸部X線データセットを前処理し、望ましくないバイアスを取り除くための、シンプルで効果的なステップワイズアプローチを提案する。
論文 参考訳(メタデータ) (2022-08-22T13:57:04Z) - POTHER: Patch-Voted Deep Learning-based Chest X-ray Bias Analysis for
COVID-19 Detection [10.516962652888989]
多くの研究が、深層学習を用いて胸部X線で新型コロナウイルスを正確に検出したと報告している。
モデル決定は、医学的病理学ではなく、相反する要因に依存する可能性があることを実証する。
負の影響を最小限に抑える新しい方法を提案する。
論文 参考訳(メタデータ) (2022-01-23T20:35:45Z) - The pitfalls of using open data to develop deep learning solutions for
COVID-19 detection in chest X-rays [64.02097860085202]
深層学習モデルは、胸部X線から新型コロナウイルスを識別するために開発された。
オープンソースデータのトレーニングやテストでは,結果は異例です。
データ分析とモデル評価は、人気のあるオープンソースデータセットであるCOVIDxが実際の臨床問題を代表していないことを示している。
論文 参考訳(メタデータ) (2021-09-14T10:59:11Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
前頭部胸部X線画像の重症度予測モデルを提案する。
このようなツールは、エスカレーションやケアの非エスカレーションに使用できる新型コロナウイルスの肺感染症の重症度を測定することができる。
論文 参考訳(メタデータ) (2020-05-24T23:13:16Z) - COVID-DA: Deep Domain Adaptation from Typical Pneumonia to COVID-19 [92.4955073477381]
新型コロナウイルス感染症(COVID-19)の流行はすでに何百万人もの人々に感染しており、今でも世界中で急速に拡大している。
近年,ディープラーニングを効果的なコンピュータ支援手法として利用し,診断効率を向上している。
本稿では,新たな深部ドメイン適応手法,すなわちCOVID-DAを提案する。
論文 参考訳(メタデータ) (2020-04-30T03:13:40Z) - Deep Learning COVID-19 Features on CXR using Limited Training Data Sets [40.45289250518209]
我々は、比較的少数のトレーニング可能なパラメータで新型コロナウイルスの診断を行うパッチベースの畳み込みニューラルネットワークアプローチを提案する。
実験の結果,本手法は最先端の性能を達成し,臨床的に解釈可能なサリエンシマップを提供することがわかった。
論文 参考訳(メタデータ) (2020-04-13T03:44:42Z) - Towards an Effective and Efficient Deep Learning Model for COVID-19
Patterns Detection in X-ray Images [2.21653002719733]
本研究の主な目的は、胸部X線検査における新型コロナウイルススクリーニングの問題に対して、正確かつ効率的な方法を提案することである。
13,569枚のX線画像のデータセットを、健康な非新型コロナウイルス患者と新型コロナウイルス患者に分けて、提案したアプローチを訓練する。
結果: 提案手法により, 全体の精度93.9%, COVID-19, 感度96.8%, 正の予測100%の高品質モデルが得られた。
論文 参考訳(メタデータ) (2020-04-12T23:26:56Z) - COVID-Net: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest X-Ray Images [93.0013343535411]
我々は,胸部X線(CXR)画像から新型コロナウイルスの症例を検出するための,深層畳み込みニューラルネットワーク設計であるCOVID-Netを紹介した。
著者たちの知る限りでは、COVID-NetはCXRイメージからCOVID-19を検出するための、最初のオープンソースネットワーク設計の1つである。
また,13,870人の患者を対象に,13,975個のCXR画像からなるオープンアクセスベンチマークデータセットであるCOVIDxも導入した。
論文 参考訳(メタデータ) (2020-03-22T12:26:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。