論文の概要: Joint Learning for Aspect and Polarity Classification in Persian Reviews
Using Multi-Task Deep Learning
- arxiv url: http://arxiv.org/abs/2201.06313v1
- Date: Mon, 17 Jan 2022 09:54:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-19 15:34:39.122665
- Title: Joint Learning for Aspect and Polarity Classification in Persian Reviews
Using Multi-Task Deep Learning
- Title(参考訳): マルチタスクディープラーニングを用いたペルシャレビューにおけるアスペクトと極性分類のための共同学習
- Authors: Milad Vazan
- Abstract要約: 本稿では,アスペクトに基づく感情分析,すなわちアスペクトカテゴリー検出(ACD)とアスペクトカテゴリー極性(ACP)の2つのサブタスクに焦点を当てた。
深層ニューラルネットワークに基づくマルチタスク学習モデルを提案し、アスペクトカテゴリを同時に検出し、アスペクトカテゴリの極性を検出する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The purpose of this paper focuses on two sub-tasks related to aspect-based
sentiment analysis, namely, aspect category detection (ACD) and aspect category
polarity (ACP) in the Persian language. Most of the previous methods only focus
on solving one of these sub-tasks separately. In this paper, we propose a
multi-task learning model based on deep neural networks, which can concurrently
detect aspect category and detect aspect category polarity. We evaluated the
proposed method using a Persian language dataset in the movie domain on
different deep learning-based models. Final experiments show that the CNN model
has better results than other models.
- Abstract(参考訳): 本稿では,ペルシャ語におけるアスペクトカテゴリ検出(acd)とアスペクトカテゴリ極性(acp)という,アスペクトベースの感情分析に関連する2つのサブタスクに着目した。
従来の手法のほとんどは、これらのサブタスクの1つを別々に解決することのみに焦点を当てていた。
本稿では,深層ニューラルネットワークに基づくマルチタスク学習モデルを提案する。
異なる深層学習モデルを用いて,映画領域におけるペルシャ語データセットを用いた提案手法の評価を行った。
最終実験では、CNNモデルは他のモデルよりも良い結果が得られた。
関連論文リスト
- Neural Network-Based Score Estimation in Diffusion Models: Optimization
and Generalization [12.812942188697326]
拡散モデルは、忠実さ、柔軟性、堅牢性を改善した高品質なサンプルを生成する際に、GANと競合する強力なツールとして登場した。
これらのモデルの主要な構成要素は、スコアマッチングを通じてスコア関数を学ぶことである。
様々なタスクにおいて経験的な成功にもかかわらず、勾配に基づくアルゴリズムが証明可能な精度でスコア関数を学習できるかどうかは不明である。
論文 参考訳(メタデータ) (2024-01-28T08:13:56Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - A Generative Language Model for Few-shot Aspect-Based Sentiment Analysis [90.24921443175514]
我々は、アスペクト項、カテゴリを抽出し、対応する極性を予測するアスペクトベースの感情分析に焦点を当てる。
本稿では,一方向の注意を伴う生成言語モデルを用いて,抽出タスクと予測タスクをシーケンス生成タスクに再構成することを提案する。
提案手法は,従来の最先端(BERTをベースとした)の性能を,数ショットとフルショットの設定において,大きなマージンで上回ります。
論文 参考訳(メタデータ) (2022-04-11T18:31:53Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - On the Transferability of Adversarial Attacksagainst Neural Text
Classifier [121.6758865857686]
テキスト分類モデルの逆例の転送可能性について検討する。
本稿では,ほとんどすべての既存モデルを騙すために,敵の例を誘導できるモデル群を見つける遺伝的アルゴリズムを提案する。
これらの逆例からモデル診断に使用できる単語置換規則を導出する。
論文 参考訳(メタデータ) (2020-11-17T10:45:05Z) - Ramifications of Approximate Posterior Inference for Bayesian Deep
Learning in Adversarial and Out-of-Distribution Settings [7.476901945542385]
ベイジアン深層学習モデルが従来のニューラルネットワークよりわずかに優れていることを示す。
予備的な調査は、初期化、アーキテクチャ、アクティベーション関数の選択によるバイアスの潜在的固有の役割を示している。
論文 参考訳(メタデータ) (2020-09-03T16:58:15Z) - Semantic Sentiment Analysis Based on Probabilistic Graphical Models and
Recurrent Neural Network [0.0]
本研究の目的は,確率的グラフィカルモデルとリカレントニューラルネットワークに基づく感情分析を行うためのセマンティクスの利用を検討することである。
実験で使用されたデータセットは、IMDB映画レビュー、Amazon Consumer Product Review、Twitter Reviewデータセットである。
論文 参考訳(メタデータ) (2020-08-06T11:59:00Z) - Rethinking Generalization of Neural Models: A Named Entity Recognition
Case Study [81.11161697133095]
NERタスクをテストベッドとして、異なる視点から既存モデルの一般化挙動を分析する。
詳細な分析による実験は、既存のニューラルNERモデルのボトルネックを診断する。
本論文の副産物として,最近のNER論文の包括的要約を含むプロジェクトをオープンソース化した。
論文 参考訳(メタデータ) (2020-01-12T04:33:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。