論文の概要: Language Model-Based Paired Variational Autoencoders for Robotic Language Learning
- arxiv url: http://arxiv.org/abs/2201.06317v2
- Date: Mon, 6 May 2024 08:48:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 03:57:05.047214
- Title: Language Model-Based Paired Variational Autoencoders for Robotic Language Learning
- Title(参考訳): ロボット言語学習のための言語モデルに基づくペア付き変分オートエンコーダ
- Authors: Ozan Özdemir, Matthias Kerzel, Cornelius Weber, Jae Hee Lee, Stefan Wermter,
- Abstract要約: 人間の幼児と同様、人工エージェントは環境と対話しながら言語を学ぶことができる。
本稿では,ロボットの動作と言語記述を双方向に結合するニューラルモデルを提案する。
次に, PVAE-BERTを導入し, 事前訓練された大規模言語モデルとモデルを同調する。
- 参考スコア(独自算出の注目度): 18.851256771007748
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human infants learn language while interacting with their environment in which their caregivers may describe the objects and actions they perform. Similar to human infants, artificial agents can learn language while interacting with their environment. In this work, first, we present a neural model that bidirectionally binds robot actions and their language descriptions in a simple object manipulation scenario. Building on our previous Paired Variational Autoencoders (PVAE) model, we demonstrate the superiority of the variational autoencoder over standard autoencoders by experimenting with cubes of different colours, and by enabling the production of alternative vocabularies. Additional experiments show that the model's channel-separated visual feature extraction module can cope with objects of different shapes. Next, we introduce PVAE-BERT, which equips the model with a pretrained large-scale language model, i.e., Bidirectional Encoder Representations from Transformers (BERT), enabling the model to go beyond comprehending only the predefined descriptions that the network has been trained on; the recognition of action descriptions generalises to unconstrained natural language as the model becomes capable of understanding unlimited variations of the same descriptions. Our experiments suggest that using a pretrained language model as the language encoder allows our approach to scale up for real-world scenarios with instructions from human users.
- Abstract(参考訳): ヒトの幼児は、介護者が行動する対象や行動を記述する環境と相互作用しながら言語を学ぶ。
人間の幼児と同様、人工エージェントは環境と対話しながら言語を学ぶことができる。
本稿では,まず,ロボットの動作と言語記述を単純なオブジェクト操作シナリオで双方向に結合するニューラルモデルを提案する。
従来のPaired Variational Autoencoders(PVAE)モデルに基づいて、異なる色の立方体を実験し、代替語彙の生成を可能にすることにより、標準オートエンコーダよりも変分オートエンコーダの優位性を実証する。
追加の実験では、モデルのチャンネル分離された視覚特徴抽出モジュールが異なる形状のオブジェクトに対処できることが示されている。
次に、PVAE-BERTを導入し、このモデルに事前訓練された大規模言語モデル、すなわち変換器(BERT)からの双方向エンコーダ表現(Bidirectional Encoder Representations from Transformers)を組み込むことにより、ネットワークがトレーニングした事前定義された記述のみを理解でき、モデルが同じ記述の無制限なバリエーションを理解することができるため、動作記述の認識は制約のない自然言語に一般化される。
実験の結果,事前学習した言語モデルを言語エンコーダとして使用することにより,人間の指示で実世界のシナリオをスケールアップすることが可能であることが示唆された。
関連論文リスト
- Learning to Model the World with Language [100.76069091703505]
人間と対話し、世界で行動するためには、エージェントは人々が使用する言語の範囲を理解し、それを視覚の世界に関連付ける必要がある。
私たちのキーとなるアイデアは、エージェントが将来を予測するのに役立つ信号として、このような多様な言語を解釈すべきである、ということです。
我々は、将来のテキストや画像表現を予測するマルチモーダル世界モデルを学ぶエージェントであるDynalangでこれをインスタンス化する。
論文 参考訳(メタデータ) (2023-07-31T17:57:49Z) - RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic
Control [140.48218261864153]
本研究では,インターネット規模のデータに基づいて学習した視覚言語モデルを,エンドツーエンドのロボット制御に直接組み込む方法について検討する。
提案手法は,インターネット規模のトレーニングから,RT-2による創発的能力の獲得を可能にした。
論文 参考訳(メタデータ) (2023-07-28T21:18:02Z) - PaLM-E: An Embodied Multimodal Language Model [101.29116156731762]
本研究では,実世界の連続型センサを言語モデルに組み込むための具体的言語モデルを提案する。
我々は、複数の具体的タスクのために、事前訓練された大規模言語モデルとともに、これらのエンコーディングをエンドツーエンドにトレーニングする。
562Bパラメータを持つ大モデル PaLM-E-562B は、OK-VQA 上での最先端性能を持つ視覚言語ジェネラリストである。
論文 参考訳(メタデータ) (2023-03-06T18:58:06Z) - Language-Driven Representation Learning for Robotics [115.93273609767145]
ロボット工学における視覚表現学習の最近の研究は、日々の作業を行う人間の大規模なビデオデータセットから学ぶことの可能性を実証している。
人間のビデオやキャプションから言語による表現学習を行うためのフレームワークを提案する。
我々は、Voltronの言語駆動学習が、特に高レベル制御を必要とするターゲット問題において、先行技術よりも優れていることを発見した。
論文 参考訳(メタデータ) (2023-02-24T17:29:31Z) - LAMASSU: Streaming Language-Agnostic Multilingual Speech Recognition and
Translation Using Neural Transducers [71.76680102779765]
自動音声認識(ASR)と音声翻訳(ST)はどちらもモデル構造としてニューラルトランスデューサを使用することができる。
ニューラルトランスデューサを用いた多言語音声認識および翻訳モデルであるLAMASSUを提案する。
論文 参考訳(メタデータ) (2022-11-05T04:03:55Z) - Learning Flexible Translation between Robot Actions and Language
Descriptions [16.538887534958555]
本稿では,ロボット動作と言語記述とのフレキシブルな変換のためのペアゲートオートエンコーダ(PGAE)を提案する。
我々は、各アクションを、翻訳方向に関する信号を含む適切な記述とペアリングすることで、エンド・ツー・エンドでモデルを訓練する。
事前訓練された言語モデルを言語エンコーダとして使用するオプションにより、我々のモデルは目に見えない自然言語入力を認識することができる。
論文 参考訳(メタデータ) (2022-07-15T12:37:05Z) - Is neural language acquisition similar to natural? A chronological
probing study [0.0515648410037406]
本稿では,MultiBERTやT5といったトランスフォーマー英語モデルの時系列探索について述べる。
コーパスの学習過程において,モデルが学習した言語に関する情報を比較した。
その結果,1)訓練の初期段階に言語情報を取得すること,2)両言語モデルが様々な言語レベルから様々な特徴を捉える能力を示した。
論文 参考訳(メタデータ) (2022-07-01T17:24:11Z) - Reshaping Robot Trajectories Using Natural Language Commands: A Study of
Multi-Modal Data Alignment Using Transformers [33.7939079214046]
我々は、人間とロボットのコラボレーションのための柔軟な言語ベースのインタフェースを提供する。
我々は、ユーザコマンドをエンコードする大規模言語モデルの分野における最近の進歩を生かしている。
言語コマンドによって修正されたロボット軌跡を含むデータセット上で、模倣学習を用いてモデルを訓練する。
論文 参考訳(メタデータ) (2022-03-25T01:36:56Z) - Dependency-based Mixture Language Models [53.152011258252315]
依存性に基づく混合言語モデルを紹介する。
より詳しくは、依存関係モデリングの新たな目的により、まずニューラルネットワークモデルを訓練する。
次に、前回の依存性モデリング確率分布と自己意図を混合することにより、次の確率を定式化する。
論文 参考訳(メタデータ) (2022-03-19T06:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。