ExpertNet: A Symbiosis of Classification and Clustering
- URL: http://arxiv.org/abs/2201.06344v1
- Date: Mon, 17 Jan 2022 11:00:30 GMT
- Title: ExpertNet: A Symbiosis of Classification and Clustering
- Authors: Shivin Srivastava, Kenji Kawaguchi, Vaibhav Rajan
- Abstract summary: ExpertNet uses novel training strategies to learn clustered latent representations and leverage them by effectively combining cluster-specific classifiers.
We demonstrate the superiority of ExpertNet over state-of-the-art methods on 6 large clinical datasets.
- Score: 22.324813752423044
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A widely used paradigm to improve the generalization performance of
high-capacity neural models is through the addition of auxiliary unsupervised
tasks during supervised training. Tasks such as similarity matching and input
reconstruction have been shown to provide a beneficial regularizing effect by
guiding representation learning. Real data often has complex underlying
structures and may be composed of heterogeneous subpopulations that are not
learned well with current approaches. In this work, we design ExpertNet, which
uses novel training strategies to learn clustered latent representations and
leverage them by effectively combining cluster-specific classifiers. We
theoretically analyze the effect of clustering on its generalization gap, and
empirically show that clustered latent representations from ExpertNet lead to
disentangling the intrinsic structure and improvement in classification
performance. ExpertNet also meets an important real-world need where
classifiers need to be tailored for distinct subpopulations, such as in
clinical risk models. We demonstrate the superiority of ExpertNet over
state-of-the-art methods on 6 large clinical datasets, where our approach leads
to valuable insights on group-specific risks.
Related papers
- From Logits to Hierarchies: Hierarchical Clustering made Simple [16.132657141993548]
We show that a lightweight procedure implemented on top of pre-trained non-hierarchical clustering models outperforms models designed specifically for hierarchical clustering.
Our proposed approach is computationally efficient and applicable to any pre-trained clustering model that outputs logits, without requiring any fine-tuning.
arXiv Detail & Related papers (2024-10-10T12:27:45Z) - Uniting contrastive and generative learning for event sequences models [51.547576949425604]
This study investigates the integration of two self-supervised learning techniques - instance-wise contrastive learning and a generative approach based on restoring masked events in latent space.
Experiments conducted on several public datasets, focusing on sequence classification and next-event type prediction, show that the integrated method achieves superior performance compared to individual approaches.
arXiv Detail & Related papers (2024-08-19T13:47:17Z) - Adaptive Self-supervised Robust Clustering for Unstructured Data with Unknown Cluster Number [12.926206811876174]
We introduce a novel self-supervised deep clustering approach tailored for unstructured data, termed Adaptive Self-supervised Robust Clustering (ASRC)
ASRC adaptively learns the graph structure and edge weights to capture both local and global structural information.
ASRC even outperforms methods that rely on prior knowledge of the number of clusters, highlighting its effectiveness in addressing the challenges of clustering unstructured data.
arXiv Detail & Related papers (2024-07-29T15:51:09Z) - GCC: Generative Calibration Clustering [55.44944397168619]
We propose a novel Generative Clustering (GCC) method to incorporate feature learning and augmentation into clustering procedure.
First, we develop a discrimirative feature alignment mechanism to discover intrinsic relationship across real and generated samples.
Second, we design a self-supervised metric learning to generate more reliable cluster assignment.
arXiv Detail & Related papers (2024-04-14T01:51:11Z) - Regularization Through Simultaneous Learning: A Case Study on Plant
Classification [0.0]
This paper introduces Simultaneous Learning, a regularization approach drawing on principles of Transfer Learning and Multi-task Learning.
We leverage auxiliary datasets with the target dataset, the UFOP-HVD, to facilitate simultaneous classification guided by a customized loss function.
Remarkably, our approach demonstrates superior performance over models without regularization.
arXiv Detail & Related papers (2023-05-22T19:44:57Z) - Anomaly Detection using Ensemble Classification and Evidence Theory [62.997667081978825]
We present a novel approach for novel detection using ensemble classification and evidence theory.
A pool selection strategy is presented to build a solid ensemble classifier.
We use uncertainty for the anomaly detection approach.
arXiv Detail & Related papers (2022-12-23T00:50:41Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
We formulate a novel clustering model, which exploits the non-negative feature property and incorporates the multi-view information into a unified joint learning framework.
We also explore, for the first time, the multi-model non-negative graph-based approach to clustering data based on deep features.
arXiv Detail & Related papers (2022-11-03T08:18:27Z) - Learning the Precise Feature for Cluster Assignment [39.320210567860485]
We propose a framework which integrates representation learning and clustering into a single pipeline for the first time.
The proposed framework exploits the powerful ability of recently developed generative models for learning intrinsic features.
Experimental results show that the performance of the proposed method is superior, or at least comparable to, the state-of-the-art methods.
arXiv Detail & Related papers (2021-06-11T04:08:54Z) - Deep adaptive fuzzy clustering for evolutionary unsupervised
representation learning [2.8028128734158164]
Cluster assignment of large and complex images is a crucial but challenging task in pattern recognition and computer vision.
We present a novel evolutionary unsupervised learning representation model with iterative optimization.
We jointly fuzzy clustering to the deep reconstruction model, in which fuzzy membership is utilized to represent a clear structure of deep cluster assignments.
arXiv Detail & Related papers (2021-03-31T13:58:10Z) - Towards Uncovering the Intrinsic Data Structures for Unsupervised Domain
Adaptation using Structurally Regularized Deep Clustering [119.88565565454378]
Unsupervised domain adaptation (UDA) is to learn classification models that make predictions for unlabeled data on a target domain.
We propose a hybrid model of Structurally Regularized Deep Clustering, which integrates the regularized discriminative clustering of target data with a generative one.
Our proposed H-SRDC outperforms all the existing methods under both the inductive and transductive settings.
arXiv Detail & Related papers (2020-12-08T08:52:00Z) - Learning to Cluster Faces via Confidence and Connectivity Estimation [136.5291151775236]
We propose a fully learnable clustering framework without requiring a large number of overlapped subgraphs.
Our method significantly improves clustering accuracy and thus performance of the recognition models trained on top, yet it is an order of magnitude more efficient than existing supervised methods.
arXiv Detail & Related papers (2020-04-01T13:39:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.