Cluster Specific Representation Learning
- URL: http://arxiv.org/abs/2412.03471v1
- Date: Wed, 04 Dec 2024 16:59:37 GMT
- Title: Cluster Specific Representation Learning
- Authors: Mahalakshmi Sabanayagam, Omar Al-Dabooni, Pascal Esser,
- Abstract summary: Despite its widespread application, there is no established definition of a good'' representation.
We propose a downstream-agnostic formulation: when inherent clusters exist in the data, the representations should be specific to each cluster.
Under this idea, we develop a meta-algorithm that jointly learns cluster-specific representations and cluster assignments.
- Score: 1.6727186769396276
- License:
- Abstract: Representation learning aims to extract meaningful lower-dimensional embeddings from data, known as representations. Despite its widespread application, there is no established definition of a ``good'' representation. Typically, the representation quality is evaluated based on its performance in downstream tasks such as clustering, de-noising, etc. However, this task-specific approach has a limitation where a representation that performs well for one task may not necessarily be effective for another. This highlights the need for a more agnostic formulation, which is the focus of our work. We propose a downstream-agnostic formulation: when inherent clusters exist in the data, the representations should be specific to each cluster. Under this idea, we develop a meta-algorithm that jointly learns cluster-specific representations and cluster assignments. As our approach is easy to integrate with any representation learning framework, we demonstrate its effectiveness in various setups, including Autoencoders, Variational Autoencoders, Contrastive learning models, and Restricted Boltzmann Machines. We qualitatively compare our cluster-specific embeddings to standard embeddings and downstream tasks such as de-noising and clustering. While our method slightly increases runtime and parameters compared to the standard model, the experiments clearly show that it extracts the inherent cluster structures in the data, resulting in improved performance in relevant applications.
Related papers
- Stable Cluster Discrimination for Deep Clustering [7.175082696240088]
Deep clustering can optimize representations of instances (i.e., representation learning) and explore the inherent data distribution.
The coupled objective implies a trivial solution that all instances collapse to the uniform features.
In this work, we first show that the prevalent discrimination task in supervised learning is unstable for one-stage clustering.
A novel stable cluster discrimination (SeCu) task is proposed and a new hardness-aware clustering criterion can be obtained accordingly.
arXiv Detail & Related papers (2023-11-24T06:43:26Z) - Generalized Category Discovery with Clustering Assignment Consistency [56.92546133591019]
Generalized category discovery (GCD) is a recently proposed open-world task.
We propose a co-training-based framework that encourages clustering consistency.
Our method achieves state-of-the-art performance on three generic benchmarks and three fine-grained visual recognition datasets.
arXiv Detail & Related papers (2023-10-30T00:32:47Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - Neighborhood Contrastive Learning for Novel Class Discovery [79.14767688903028]
We build a new framework, named Neighborhood Contrastive Learning, to learn discriminative representations that are important to clustering performance.
We experimentally demonstrate that these two ingredients significantly contribute to clustering performance and lead our model to outperform state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2021-06-20T17:34:55Z) - Learning the Precise Feature for Cluster Assignment [39.320210567860485]
We propose a framework which integrates representation learning and clustering into a single pipeline for the first time.
The proposed framework exploits the powerful ability of recently developed generative models for learning intrinsic features.
Experimental results show that the performance of the proposed method is superior, or at least comparable to, the state-of-the-art methods.
arXiv Detail & Related papers (2021-06-11T04:08:54Z) - You Never Cluster Alone [150.94921340034688]
We extend the mainstream contrastive learning paradigm to a cluster-level scheme, where all the data subjected to the same cluster contribute to a unified representation.
We define a set of categorical variables as clustering assignment confidence, which links the instance-level learning track with the cluster-level one.
By reparametrizing the assignment variables, TCC is trained end-to-end, requiring no alternating steps.
arXiv Detail & Related papers (2021-06-03T14:59:59Z) - Unsupervised Visual Representation Learning by Online Constrained
K-Means [44.38989920488318]
Cluster discrimination is an effective pretext task for unsupervised representation learning.
We propose a novel clustering-based pretext task with online textbfConstrained textbfK-mtextbfeans (textbfCoKe)
Our online assignment method has a theoretical guarantee to approach the global optimum.
arXiv Detail & Related papers (2021-05-24T20:38:32Z) - Graph Contrastive Clustering [131.67881457114316]
We propose a novel graph contrastive learning framework, which is then applied to the clustering task and we come up with the Graph Constrastive Clustering(GCC) method.
Specifically, on the one hand, the graph Laplacian based contrastive loss is proposed to learn more discriminative and clustering-friendly features.
On the other hand, a novel graph-based contrastive learning strategy is proposed to learn more compact clustering assignments.
arXiv Detail & Related papers (2021-04-03T15:32:49Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
We propose a graph learning framework to preserve both the local and global structure of data.
Our method uses the self-expressiveness of samples to capture the global structure and adaptive neighbor approach to respect the local structure.
Our model is equivalent to a combination of kernel k-means and k-means methods under certain condition.
arXiv Detail & Related papers (2020-08-31T08:41:20Z) - Simple and Scalable Sparse k-means Clustering via Feature Ranking [14.839931533868176]
We propose a novel framework for sparse k-means clustering that is intuitive, simple to implement, and competitive with state-of-the-art algorithms.
Our core method readily generalizes to several task-specific algorithms such as clustering on subsets of attributes and in partially observed data settings.
arXiv Detail & Related papers (2020-02-20T02:41:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.