論文の概要: Distillation from heterogeneous unlabeled collections
- arxiv url: http://arxiv.org/abs/2201.06507v1
- Date: Mon, 17 Jan 2022 16:31:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-19 16:43:32.915515
- Title: Distillation from heterogeneous unlabeled collections
- Title(参考訳): 異種無ラベルコレクションからの蒸留
- Authors: Jean-Michel Begon and Pierre Geurts
- Abstract要約: そこで本稿では,大規模な教員ネットワークで学習した知識を小学生に抽出するために,そのようなサンプルを活用する手法を提案する。
我々は,前者は生徒の収束を加速し,後者は成績を向上することを示した。
- 参考スコア(独自算出の注目度): 12.112335886937192
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Compressing deep networks is essential to expand their range of applications
to constrained settings. The need for compression however often arises long
after the model was trained, when the original data might no longer be
available. On the other hand, unlabeled data, not necessarily related to the
target task, is usually plentiful, especially in image classification tasks. In
this work, we propose a scheme to leverage such samples to distill the
knowledge learned by a large teacher network to a smaller student. The proposed
technique relies on (i) preferentially sampling datapoints that appear related,
and (ii) taking better advantage of the learning signal. We show that the
former speeds up the student's convergence, while the latter boosts its
performance, achieving performances closed to what can be expected with the
original data.
- Abstract(参考訳): ディープネットワークの圧縮は、アプリケーションの範囲を制約された設定に拡大するために不可欠である。
しかし、圧縮の必要性はモデルがトレーニングされてからずっと経ち、元のデータが使えなくなった後にしばしば生じます。
一方で、対象とするタスクに必ずしも関連しないラベルのないデータは、通常、特に画像分類タスクにおいて豊富である。
本研究では,大規模な教員ネットワークで学習した知識を小学生に抽出するために,そのようなサンプルを活用する手法を提案する。
提案手法は
(i)関係に現れるデータポイントを優先的にサンプリングし、
(II)学習信号のより優れた活用。
その結果、前者は生徒の収束を加速し、後者は成績を向上し、元のデータで期待できるようなパフォーマンスを達成できることが判明した。
関連論文リスト
- Granularity Matters in Long-Tail Learning [62.30734737735273]
より粒度の細かいデータセットは、データの不均衡の影響を受けにくい傾向があります。
既存のクラスと視覚的に類似したオープンセット補助クラスを導入し、頭と尾の両方の表現学習を強化することを目的とした。
補助授業の圧倒的な存在がトレーニングを混乱させるのを防ぐために,近隣のサイレンシング障害を導入する。
論文 参考訳(メタデータ) (2024-10-21T13:06:21Z) - Large Language Model Guided Knowledge Distillation for Time Series
Anomaly Detection [12.585365177675607]
AnomalyLLMは15のデータセットで最先端のパフォーマンスを示し、UCRデータセットの少なくとも14.5%の精度向上を実現している。
論文 参考訳(メタデータ) (2024-01-26T09:51:07Z) - Prototype-Sample Relation Distillation: Towards Replay-Free Continual
Learning [14.462797749666992]
本稿では,表現とクラスプロトタイプを共同で学習するための総合的なアプローチを提案する。
本稿では,新しいタスクデータと比較して,クラスプロトタイプの相対的類似性を維持することを制約する新しい蒸留損失を提案する。
この手法はタスクインクリメンタル設定における最先端性能を得る。
論文 参考訳(メタデータ) (2023-03-26T16:35:45Z) - Time Series Contrastive Learning with Information-Aware Augmentations [57.45139904366001]
コントラスト学習の鍵となる要素は、いくつかの先行を示唆する適切な拡張を選択して、実現可能な正のサンプルを構築することである。
対照的な学習タスクやデータセットに意味のある時系列データの増大をどうやって見つけるかは、未解決の問題である。
本稿では,時系列表現学習のための最適な拡張を適応的に選択する情報認識拡張を用いた新しいコントラスト学習手法であるInfoTSを提案する。
論文 参考訳(メタデータ) (2023-03-21T15:02:50Z) - Optimal transfer protocol by incremental layer defrosting [66.76153955485584]
トランスファーラーニングは、限られた量のデータでモデルトレーニングを可能にする強力なツールである。
最も単純な転送学習プロトコルは、データリッチなソースタスクで事前訓練されたネットワークの機能抽出層を凍結する。
このプロトコルは、しばしば準最適であり、事前学習されたネットワークの小さな部分を凍結したままにしておくと、最大の性能向上が達成される可能性がある。
論文 参考訳(メタデータ) (2023-03-02T17:32:11Z) - Bridging Non Co-occurrence with Unlabeled In-the-wild Data for
Incremental Object Detection [56.22467011292147]
物体検出における破滅的忘れを緩和するために,いくつかの漸進的学習法が提案されている。
有効性にもかかわらず、これらの手法は新規クラスのトレーニングデータにラベルのないベースクラスの共起を必要とする。
そこで本研究では,新たな授業の訓練において,欠落した基本クラスが原因で生じる非発生を補うために,未ラベルのインザ・ザ・ワイルドデータを使用することを提案する。
論文 参考訳(メタデータ) (2021-10-28T10:57:25Z) - On the Exploration of Incremental Learning for Fine-grained Image
Retrieval [45.48333682748607]
我々は,新たなカテゴリが時間とともに追加される場合に,細粒度画像検索の問題を漸進的に考慮する。
本稿では,検索性能の劣化を抑えるための漸進学習手法を提案する。
提案手法は,新しいクラスにおいて高い性能を保ちながら,元のクラスにおける破滅的な忘れを効果的に軽減する。
論文 参考訳(メタデータ) (2020-10-15T21:07:44Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z) - DeGAN : Data-Enriching GAN for Retrieving Representative Samples from a
Trained Classifier [58.979104709647295]
我々は、トレーニングされたネットワークの将来の学習タスクのために、利用可能なデータの豊富さと関連するデータの欠如の間のギャップを埋める。
利用可能なデータは、元のトレーニングデータセットまたは関連するドメインデータセットの不均衡なサブセットである可能性があるため、代表サンプルを検索するために使用します。
関連ドメインからのデータを活用して最先端のパフォーマンスを実現することを実証する。
論文 参考訳(メタデータ) (2019-12-27T02:05:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。