Neural Computed Tomography
- URL: http://arxiv.org/abs/2201.06574v1
- Date: Mon, 17 Jan 2022 18:50:58 GMT
- Title: Neural Computed Tomography
- Authors: Kunal Gupta, Brendan Colvert and Francisco Contijoch
- Abstract summary: Motion during acquisition of a set of projections can lead to significant motion artifacts in computed tomography reconstructions.
We propose a novel reconstruction framework, NeuralCT, to generate time-resolved images free from motion artifacts.
- Score: 1.7188280334580197
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Motion during acquisition of a set of projections can lead to significant
motion artifacts in computed tomography reconstructions despite fast
acquisition of individual views. In cases such as cardiac imaging, motion may
be unavoidable and evaluating motion may be of clinical interest.
Reconstructing images with reduced motion artifacts has typically been achieved
by developing systems with faster gantry rotation or using algorithms which
measure and/or estimate the displacements. However, these approaches have had
limited success due to both physical constraints as well as the challenge of
estimating/measuring non-rigid, temporally varying, and patient-specific
motions. We propose a novel reconstruction framework, NeuralCT, to generate
time-resolved images free from motion artifacts. Our approaches utilizes a
neural implicit approach and does not require estimation or modeling of the
underlying motion. Instead, boundaries are represented using a signed distance
metric and neural implicit framework. We utilize `analysis-by-synthesis' to
identify a solution consistent with the acquired sinogram as well as spatial
and temporal consistency constraints. We illustrate the utility of NeuralCT in
three progressively more complex scenarios: translation of a small circle,
heartbeat-like change in an ellipse's diameter, and complex topological
deformation. Without hyperparameter tuning or change to the architecture,
NeuralCT provides high quality image reconstruction for all three motions, as
compared to filtered backprojection, using mean-square-error and Dice metrics.
Related papers
- Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators [72.79532467687427]
Compressed Sensing MRI reconstructs images of the body's internal anatomy from undersampled and compressed measurements.
Deep neural networks have shown great potential for reconstructing high-quality images from highly undersampled measurements.
We propose a unified model that is robust to different subsampling patterns and image resolutions in CS-MRI.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - SpaER: Learning Spatio-temporal Equivariant Representations for Fetal Brain Motion Tracking [6.417960463128722]
SpaER is a pioneering method for fetal motion tracking.
We develop an equivariant neural network that efficiently learns rigid motion sequences.
We validate our model using real fetal echo-planar images with simulated and real motions.
arXiv Detail & Related papers (2024-07-29T17:24:52Z) - CPT-Interp: Continuous sPatial and Temporal Motion Modeling for 4D Medical Image Interpolation [22.886841531680567]
Motion information from 4D medical imaging offers critical insights into dynamic changes in patient anatomy for clinical assessments and radiotherapy planning.
However, inherent physical and technical constraints of imaging hardware often necessitate a compromise between temporal resolution and image quality.
We propose a novel approach for continuously modeling patient anatomic motion using implicit neural representation.
arXiv Detail & Related papers (2024-05-24T09:35:42Z) - Deep Cardiac MRI Reconstruction with ADMM [7.694990352622926]
We present a deep learning (DL)-based method for accelerated cine and multi-contrast reconstruction in the context of cardiac imaging.
Our method optimize in both the image and k-space domains, allowing for high reconstruction fidelity.
arXiv Detail & Related papers (2023-10-10T13:46:11Z) - SceNeRFlow: Time-Consistent Reconstruction of General Dynamic Scenes [75.9110646062442]
We propose SceNeRFlow to reconstruct a general, non-rigid scene in a time-consistent manner.
Our method takes multi-view RGB videos and background images from static cameras with known camera parameters as input.
We show experimentally that, unlike prior work that only handles small motion, our method enables the reconstruction of studio-scale motions.
arXiv Detail & Related papers (2023-08-16T09:50:35Z) - Fluid registration between lung CT and stationary chest tomosynthesis
images [23.239722016943794]
We formulate a 3D/2D registration approach which infers a 3D deformation based on measured projections and digitally reconstructed radiographs.
We demonstrate our approach for the registration between CT and stationary chest tomosynthesis (sDCT) images and show how it naturally leads to an iterative image reconstruction approach.
arXiv Detail & Related papers (2022-03-06T21:51:49Z) - Multi-Temporal Convolutions for Human Action Recognition in Videos [83.43682368129072]
We present a novel temporal-temporal convolution block that is capable of extracting at multiple resolutions.
The proposed blocks are lightweight and can be integrated into any 3D-CNN architecture.
arXiv Detail & Related papers (2020-11-08T10:40:26Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
Limited-angle tomography of strongly scattering quasi-transparent objects is a challenging, highly ill-posed problem.
Regularizing priors are necessary to reduce artifacts by improving the condition of such problems.
We devised a recurrent neural network (RNN) architecture with a novel split-convolutional gated recurrent unit (SC-GRU) as the building block.
arXiv Detail & Related papers (2020-07-21T11:48:22Z) - Inertial Measurements for Motion Compensation in Weight-bearing
Cone-beam CT of the Knee [6.7461735822055715]
Involuntary motion during CT scans of the knee causes artifacts in the reconstructed volumes making them unusable for clinical diagnosis.
We propose to attach an inertial measurement unit (IMU) to the leg of the subject in order to measure the motion during the scan and correct for it.
arXiv Detail & Related papers (2020-07-09T09:26:27Z) - 4D Spatio-Temporal Convolutional Networks for Object Position Estimation
in OCT Volumes [69.62333053044712]
3D convolutional neural networks (CNNs) have shown promising performance for pose estimation of a marker object using single OCT images.
We extend 3D CNNs to 4D-temporal CNNs to evaluate the impact of additional temporal information for marker object tracking.
arXiv Detail & Related papers (2020-07-02T12:02:20Z) - Spatio-Temporal Deep Learning Methods for Motion Estimation Using 4D OCT
Image Data [63.73263986460191]
Localizing structures and estimating the motion of a specific target region are common problems for navigation during surgical interventions.
We investigate whether using a temporal stream of OCT image volumes can improve deep learning-based motion estimation performance.
Using 4D information for the model input improves performance while maintaining reasonable inference times.
arXiv Detail & Related papers (2020-04-21T15:43:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.