論文の概要: Motion Inbetweening via Deep $\Delta$-Interpolator
- arxiv url: http://arxiv.org/abs/2201.06701v1
- Date: Tue, 18 Jan 2022 02:13:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-20 03:29:37.103212
- Title: Motion Inbetweening via Deep $\Delta$-Interpolator
- Title(参考訳): Deep $\Delta$-Interpolator によるモーションインベント
- Authors: Boris N. Oreshkin, Antonios Valkanas, F\'elix G. Harvey, Louis-Simon
M\'enard, Florent Bocquelet, Mark J. Coates
- Abstract要約: デルタモードで深層学習補間器を動作させた場合, 行方不明なミドルフレームを合成する作業は, より正確かつ効果的に解決できることを示す。
最後のフレームの参照に対して$Delta$-regimeが有効であることを示す。
- 参考スコア(独自算出の注目度): 7.193217430660011
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show that the task of synthesizing missing middle frames, commonly known
as motion inbetweening in the animation industry, can be solved more accurately
and effectively if a deep learning interpolator operates in the delta mode,
using the ordinary linear interpolator as a baseline. We demonstrate our
empirical findings on the publicly available LaFAN1 dataset. We further
generalize this result by showing that the $\Delta$-regime is viable with
respect to the reference of the last known frame. This supports the more
general conclusion that deep inbetweening in the reference frame local to input
frames is more accurate and robust than inbetweening in the global (world)
reference frame advocated in previous work. Our code is publicly available at
https://github.com/boreshkinai/delta-interpolator.
- Abstract(参考訳): アニメーション業界で一般的にはモーションインベンションとして知られるミドルフレームを合成するタスクは、通常の線形補間器をベースラインとしてデルタモードで深層学習補間器が動作した場合、より正確かつ効果的に解決できることを示す。
公開されているLaFAN1データセット上で実証的な結果を示す。
我々は、この結果をさらに一般化し、最後の既知のフレームの参照に対して$\Delta$-regimeが実行可能であることを示す。
これは、入力フレームに局所的な参照フレームの深いインベントワイニングが、以前の研究で提唱されたグローバル(世界)参照フレームのインベントワイニングよりも正確で堅牢である、というより一般的な結論を支持する。
私たちのコードはhttps://github.com/boreshkinai/delta-interpolatorで公開しています。
関連論文リスト
- Thin-Plate Spline-based Interpolation for Animation Line Inbetweening [54.69811179222127]
チャンファー距離(CD: Chamfer Distance)は、一般に間欠的な性能を評価するために用いられる。
薄板スプライン変換を応用したアニメーションラインインテタイニングの簡易かつ効果的な手法を提案する。
提案手法は, 流動性を高めた高品質な結果を提供することにより, 既存の手法よりも優れる。
論文 参考訳(メタデータ) (2024-08-17T08:05:31Z) - Dynamic Frame Interpolation in Wavelet Domain [57.25341639095404]
ビデオフレームは、より流動的な視覚体験のためにフレームレートを上げることができる、重要な低レベルな計算ビジョンタスクである。
既存の手法は、高度なモーションモデルと合成ネットワークを利用することで大きな成功を収めた。
WaveletVFIは、同様の精度を維持しながら最大40%の計算を削減できるため、他の最先端技術に対してより効率的に処理できる。
論文 参考訳(メタデータ) (2023-09-07T06:41:15Z) - Video Frame Interpolation with Densely Queried Bilateral Correlation [52.823751291070906]
Video Frame Interpolation (VFI) は、既存のフレーム間で既存の中間フレームを合成することを目的としている。
フローベースVFIアルゴリズムは、中間運動場を推定し、既存のフレームをワープする。
本稿では,DQBC(Densely Queried Bilateral correlation, DQBC)を提案する。
論文 参考訳(メタデータ) (2023-04-26T14:45:09Z) - Modelling Latent Dynamics of StyleGAN using Neural ODEs [52.03496093312985]
我々は、GANから独立に反転した潜在符号の軌跡を学習する。
学習した連続軌道により、無限のフレームと一貫したビデオ操作を行うことができる。
提案手法は最先端の性能を実現するが,計算量が少なくなる。
論文 参考訳(メタデータ) (2022-08-23T21:20:38Z) - Enhanced Bi-directional Motion Estimation for Video Frame Interpolation [0.05541644538483946]
本稿では,動画フレーム推定のための新しいアルゴリズムを提案する。
提案手法は,広い範囲の動画フレームベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2022-06-17T06:08:43Z) - Long-term Video Frame Interpolation via Feature Propagation [95.18170372022703]
ビデオフレーム(VFI)は、まず入力間の動きを推定し、次に推定された動きで入力を目標時間にワープすることで、中間フレーム(s)を予測する。
入力シーケンス間の時間的距離が増加すると、このアプローチは最適ではない。
本稿では,従来の特徴レベルの予測を新しいモーション・トゥ・フェース・アプローチで拡張した伝搬ネットワーク(PNet)を提案する。
論文 参考訳(メタデータ) (2022-03-29T10:47:06Z) - FILM: Frame Interpolation for Large Motion [20.04001872133824]
本稿では,2つの入力画像から複数の中間フレームを合成するフレームアルゴリズムを提案する。
提案手法は,Xiph大運動ベンチマークの最先端手法より優れている。
論文 参考訳(メタデータ) (2022-02-10T08:48:18Z) - Asymmetric Bilateral Motion Estimation for Video Frame Interpolation [50.44508853885882]
非対称な左右運動推定(ABME)に基づく新しいビデオフレームアルゴリズムを提案する。
我々は左右対称運動場を予測してアンカーフレームを補間する。
アンカーフレームから入力フレームへの非対称な左右運動場を推定する。
第三に、非対称場を用いて入力フレームを後方にワープし、中間フレームを再構築する。
論文 参考訳(メタデータ) (2021-08-15T21:11:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。