Knowledge Tracing: A Survey
- URL: http://arxiv.org/abs/2201.06953v1
- Date: Sat, 8 Jan 2022 13:59:48 GMT
- Title: Knowledge Tracing: A Survey
- Authors: Ghodai Abdelrahman, Qing Wang, and Bernardo Pereira Nunes
- Abstract summary: Humans ability to transfer knowledge through teaching is one of the essential aspects for human intelligence.
With the rise of online education platforms, there is a similar need for machines to track the knowledge of students and tailor their learning experience.
This is known as the Knowledge Tracing (KT) problem in the literature.
Effectively solving the KT problem would unlock the potential of computer-aided education applications such as intelligent tutoring systems, curriculum learning, and learning materials' recommendation.
- Score: 4.336461815419918
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Humans ability to transfer knowledge through teaching is one of the essential
aspects for human intelligence. A human teacher can track the knowledge of
students to customize the teaching on students needs. With the rise of online
education platforms, there is a similar need for machines to track the
knowledge of students and tailor their learning experience. This is known as
the Knowledge Tracing (KT) problem in the literature. Effectively solving the
KT problem would unlock the potential of computer-aided education applications
such as intelligent tutoring systems, curriculum learning, and learning
materials' recommendation. Moreover, from a more general viewpoint, a student
may represent any kind of intelligent agents including both human and
artificial agents. Thus, the potential of KT can be extended to any machine
teaching application scenarios which seek for customizing the learning
experience for a student agent (i.e., a machine learning model). In this paper,
we provide a comprehensive and systematic review for the KT literature. We
cover a broad range of methods starting from the early attempts to the recent
state-of-the-art methods using deep learning, while highlighting the
theoretical aspects of models and the characteristics of benchmark datasets.
Besides these, we shed light on key modelling differences between closely
related methods and summarize them in an easy-to-understand format. Finally, we
discuss current research gaps in the KT literature and possible future research
and application directions.
Related papers
- Leveraging Pedagogical Theories to Understand Student Learning Process with Graph-based Reasonable Knowledge Tracing [11.082908318943248]
We introduce GRKT, a graph-based reasonable knowledge tracing method to address these issues.
We propose a fine-grained and psychological three-stage modeling process as knowledge retrieval, memory strengthening, and knowledge learning/forgetting.
arXiv Detail & Related papers (2024-06-07T10:14:30Z) - Explainable Few-shot Knowledge Tracing [48.877979333221326]
We propose a cognition-guided framework that can track the student knowledge from a few student records while providing natural language explanations.
Experimental results from three widely used datasets show that LLMs can perform comparable or superior to competitive deep knowledge tracing methods.
arXiv Detail & Related papers (2024-05-23T10:07:21Z) - Knowledge Tracing Challenge: Optimal Activity Sequencing for Students [0.9814642627359286]
Knowledge tracing is a method used in education to assess and track the acquisition of knowledge by individual learners.
We will present the results of the implementation of two Knowledge Tracing algorithms on a newly released dataset as part of the AAAI2023 Global Knowledge Tracing Challenge.
arXiv Detail & Related papers (2023-11-13T16:28:34Z) - Attentive Q-Matrix Learning for Knowledge Tracing [4.863310073296471]
We propose Q-matrix-based Attentive Knowledge Tracing (QAKT) as an end-to-end style model.
QAKT is capable of modeling problems hierarchically and learning the q-matrix efficiently based on students' sequences.
Results of further experiments suggest that the q-matrix learned by QAKT is highly model-agnostic and more information-sufficient than the one labeled by human experts.
arXiv Detail & Related papers (2023-04-06T12:31:34Z) - Interpretable Knowledge Tracing: Simple and Efficient Student Modeling
with Causal Relations [21.74631969428855]
Interpretable Knowledge Tracing (IKT) is a simple model that relies on three meaningful latent features.
IKT's prediction of future student performance is made using a Tree-Augmented Naive Bayes (TAN)
IKT has great potential for providing adaptive and personalized instructions with causal reasoning in real-world educational systems.
arXiv Detail & Related papers (2021-12-15T19:05:48Z) - Learning Data Teaching Strategies Via Knowledge Tracing [5.648636668261282]
We propose a novel method, called Knowledge Augmented Data Teaching (KADT), to optimize a data teaching strategy for a student model.
The KADT method incorporates a knowledge tracing model to dynamically capture the knowledge progress of a student model in terms of latent learning concepts.
We have evaluated the performance of the KADT method on four different machine learning tasks including knowledge tracing, sentiment analysis, movie recommendation, and image classification.
arXiv Detail & Related papers (2021-11-13T10:10:48Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
Machine learning is concerned with the development and applications of algorithms that can recognize patterns in data and use them for predictive modeling.
Deep learning has become its own subfield of machine learning.
In the context of biological research, deep learning has been increasingly used to derive novel insights from high-dimensional biological data.
arXiv Detail & Related papers (2021-05-29T21:02:44Z) - A Survey of Knowledge Tracing: Models, Variants, and Applications [70.69281873057619]
Knowledge Tracing is one of the fundamental tasks for student behavioral data analysis.
We present three types of fundamental KT models with distinct technical routes.
We discuss potential directions for future research in this rapidly growing field.
arXiv Detail & Related papers (2021-05-06T13:05:55Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to meet her desired goal.
In recent years, the boost of artificial intelligence (AI) and machine learning (ML) has unfolded novel perspectives to enhance personalized education.
arXiv Detail & Related papers (2021-01-19T12:23:32Z) - Attentional Graph Convolutional Networks for Knowledge Concept
Recommendation in MOOCs in a Heterogeneous View [72.98388321383989]
Massive open online courses ( MOOCs) provide a large-scale and open-access learning opportunity for students to grasp the knowledge.
To attract students' interest, the recommendation system is applied by MOOCs providers to recommend courses to students.
We propose an end-to-end graph neural network-based approach calledAttentionalHeterogeneous Graph Convolutional Deep Knowledge Recommender(ACKRec) for knowledge concept recommendation in MOOCs.
arXiv Detail & Related papers (2020-06-23T18:28:08Z) - Explainable Active Learning (XAL): An Empirical Study of How Local
Explanations Impact Annotator Experience [76.9910678786031]
We propose a novel paradigm of explainable active learning (XAL), by introducing techniques from the recently surging field of explainable AI (XAI) into an Active Learning setting.
Our study shows benefits of AI explanation as interfaces for machine teaching--supporting trust calibration and enabling rich forms of teaching feedback, and potential drawbacks--anchoring effect with the model judgment and cognitive workload.
arXiv Detail & Related papers (2020-01-24T22:52:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.