Leveraging Pedagogical Theories to Understand Student Learning Process with Graph-based Reasonable Knowledge Tracing
- URL: http://arxiv.org/abs/2406.12896v1
- Date: Fri, 7 Jun 2024 10:14:30 GMT
- Title: Leveraging Pedagogical Theories to Understand Student Learning Process with Graph-based Reasonable Knowledge Tracing
- Authors: Jiajun Cui, Hong Qian, Bo Jiang, Wei Zhang,
- Abstract summary: We introduce GRKT, a graph-based reasonable knowledge tracing method to address these issues.
We propose a fine-grained and psychological three-stage modeling process as knowledge retrieval, memory strengthening, and knowledge learning/forgetting.
- Score: 11.082908318943248
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Knowledge tracing (KT) is a crucial task in intelligent education, focusing on predicting students' performance on given questions to trace their evolving knowledge. The advancement of deep learning in this field has led to deep-learning knowledge tracing (DLKT) models that prioritize high predictive accuracy. However, many existing DLKT methods overlook the fundamental goal of tracking students' dynamical knowledge mastery. These models do not explicitly model knowledge mastery tracing processes or yield unreasonable results that educators find difficulty to comprehend and apply in real teaching scenarios. In response, our research conducts a preliminary analysis of mainstream KT approaches to highlight and explain such unreasonableness. We introduce GRKT, a graph-based reasonable knowledge tracing method to address these issues. By leveraging graph neural networks, our approach delves into the mutual influences of knowledge concepts, offering a more accurate representation of how the knowledge mastery evolves throughout the learning process. Additionally, we propose a fine-grained and psychological three-stage modeling process as knowledge retrieval, memory strengthening, and knowledge learning/forgetting, to conduct a more reasonable knowledge tracing process. Comprehensive experiments demonstrate that GRKT outperforms eleven baselines across three datasets, not only enhancing predictive accuracy but also generating more reasonable knowledge tracing results. This makes our model a promising advancement for practical implementation in educational settings. The source code is available at https://github.com/JJCui96/GRKT.
Related papers
- KBAlign: Efficient Self Adaptation on Specific Knowledge Bases [75.78948575957081]
Large language models (LLMs) usually rely on retrieval-augmented generation to exploit knowledge materials in an instant manner.
We propose KBAlign, an approach designed for efficient adaptation to downstream tasks involving knowledge bases.
Our method utilizes iterative training with self-annotated data such as Q&A pairs and revision suggestions, enabling the model to grasp the knowledge content efficiently.
arXiv Detail & Related papers (2024-11-22T08:21:03Z) - Chain-of-Knowledge: Integrating Knowledge Reasoning into Large Language Models by Learning from Knowledge Graphs [55.317267269115845]
Chain-of-Knowledge (CoK) is a comprehensive framework for knowledge reasoning.
CoK includes methodologies for both dataset construction and model learning.
We conduct extensive experiments with KnowReason.
arXiv Detail & Related papers (2024-06-30T10:49:32Z) - Explainable Few-shot Knowledge Tracing [48.877979333221326]
We propose a cognition-guided framework that can track the student knowledge from a few student records while providing natural language explanations.
Experimental results from three widely used datasets show that LLMs can perform comparable or superior to competitive deep knowledge tracing methods.
arXiv Detail & Related papers (2024-05-23T10:07:21Z) - A Question-centric Multi-experts Contrastive Learning Framework for Improving the Accuracy and Interpretability of Deep Sequential Knowledge Tracing Models [26.294808618068146]
Knowledge tracing plays a crucial role in predicting students' future performance.
Deep neural networks (DNNs) have shown great potential in solving the KT problem.
However, there still exist some important challenges when applying deep learning techniques to model the KT process.
arXiv Detail & Related papers (2024-03-12T05:15:42Z) - A Closer Look at the Limitations of Instruction Tuning [52.587607091917214]
We show that Instruction Tuning (IT) fails to enhance knowledge or skills in large language models (LLMs)
We also show that popular methods to improve IT do not lead to performance improvements over a simple LoRA fine-tuned model.
Our findings reveal that responses generated solely from pre-trained knowledge consistently outperform responses by models that learn any form of new knowledge from IT on open-source datasets.
arXiv Detail & Related papers (2024-02-03T04:45:25Z) - Recognizing Unseen Objects via Multimodal Intensive Knowledge Graph
Propagation [68.13453771001522]
We propose a multimodal intensive ZSL framework that matches regions of images with corresponding semantic embeddings.
We conduct extensive experiments and evaluate our model on large-scale real-world data.
arXiv Detail & Related papers (2023-06-14T13:07:48Z) - Interpretable Knowledge Tracing: Simple and Efficient Student Modeling
with Causal Relations [21.74631969428855]
Interpretable Knowledge Tracing (IKT) is a simple model that relies on three meaningful latent features.
IKT's prediction of future student performance is made using a Tree-Augmented Naive Bayes (TAN)
IKT has great potential for providing adaptive and personalized instructions with causal reasoning in real-world educational systems.
arXiv Detail & Related papers (2021-12-15T19:05:48Z) - On the Interpretability of Deep Learning Based Models for Knowledge
Tracing [5.120837730908589]
Knowledge tracing allows Intelligent Tutoring Systems to infer which topics or skills a student has mastered.
Deep Learning based models like Deep Knowledge Tracing (DKT) and Dynamic Key-Value Memory Network (DKVMN) have achieved significant improvements.
However, these deep learning based models are not as interpretable as other models because the decision-making process learned by deep neural networks is not wholly understood.
arXiv Detail & Related papers (2021-01-27T11:55:03Z) - Towards a Universal Continuous Knowledge Base [49.95342223987143]
We propose a method for building a continuous knowledge base that can store knowledge imported from multiple neural networks.
Experiments on text classification show promising results.
We import the knowledge from multiple models to the knowledge base, from which the fused knowledge is exported back to a single model.
arXiv Detail & Related papers (2020-12-25T12:27:44Z) - Dynamic Knowledge embedding and tracing [18.717482292051788]
We propose a novel approach to knowledge tracing that combines techniques from matrix factorization with recent progress in recurrent neural networks (RNNs)
The proposed emphDynEmb framework enables the tracking of student knowledge even without the concept/skill tag information.
arXiv Detail & Related papers (2020-05-18T21:56:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.