Optimizing Active Learning for Low Annotation Budgets
- URL: http://arxiv.org/abs/2201.07200v1
- Date: Tue, 18 Jan 2022 18:53:10 GMT
- Title: Optimizing Active Learning for Low Annotation Budgets
- Authors: Umang Aggarwal, Adrian Popescu and C\'eline Hudelot
- Abstract summary: In deep learning, active learning is usually implemented as an iterative process in which successive deep models are updated via fine tuning.
We tackle this issue by using an approach inspired by transfer learning.
We introduce a novel acquisition function which exploits the iterative nature of AL process to select samples in a more robust fashion.
- Score: 6.753808772846254
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: When we can not assume a large amount of annotated data , active learning is
a good strategy. It consists in learning a model on a small amount of annotated
data (annotation budget) and in choosing the best set of points to annotate in
order to improve the previous model and gain in generalization. In deep
learning, active learning is usually implemented as an iterative process in
which successive deep models are updated via fine tuning, but it still poses
some issues. First, the initial batch of annotated images has to be
sufficiently large to train a deep model. Such an assumption is strong,
especially when the total annotation budget is reduced. We tackle this issue by
using an approach inspired by transfer learning. A pre-trained model is used as
a feature extractor and only shallow classifiers are learned during the active
iterations. The second issue is the effectiveness of probability or feature
estimates of early models for AL task. Samples are generally selected for
annotation using acquisition functions based only on the last learned model. We
introduce a novel acquisition function which exploits the iterative nature of
AL process to select samples in a more robust fashion. Samples for which there
is a maximum shift towards uncertainty between the last two learned models
predictions are favored. A diversification step is added to select samples from
different regions of the classification space and thus introduces a
representativeness component in our approach. Evaluation is done against
competitive methods with three balanced and imbalanced datasets and outperforms
them.
Related papers
- Adaptive Intra-Class Variation Contrastive Learning for Unsupervised Person Re-Identification [10.180143197144803]
We propose an adaptive intra-class variation contrastive learning algorithm for unsupervised Re-ID, called AdaInCV.
The algorithm quantitatively evaluates the learning ability of the model for each class by considering the intra-class variations after clustering.
To be more specific, two new strategies are proposed: Adaptive Sample Mining (AdaSaM) and Adaptive Outlier Filter (AdaOF)
arXiv Detail & Related papers (2024-04-06T15:48:14Z) - Class incremental learning with probability dampening and cascaded gated classifier [4.285597067389559]
We propose a novel incremental regularisation approach called Margin Dampening and Cascaded Scaling.
The first combines a soft constraint and a knowledge distillation approach to preserve past knowledge while allowing forgetting new patterns.
We empirically show that our approach performs well on multiple benchmarks well-established baselines.
arXiv Detail & Related papers (2024-02-02T09:33:07Z) - Zero-shot Active Learning Using Self Supervised Learning [11.28415437676582]
We propose a new Active Learning approach which is model agnostic as well as one doesn't require an iterative process.
We aim to leverage self-supervised learnt features for the task of Active Learning.
arXiv Detail & Related papers (2024-01-03T11:49:07Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain.
Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples.
In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain.
arXiv Detail & Related papers (2023-04-07T23:51:07Z) - MoBYv2AL: Self-supervised Active Learning for Image Classification [57.4372176671293]
We present MoBYv2AL, a novel self-supervised active learning framework for image classification.
Our contribution lies in lifting MoBY, one of the most successful self-supervised learning algorithms, to the AL pipeline.
We achieve state-of-the-art results when compared to recent AL methods.
arXiv Detail & Related papers (2023-01-04T10:52:02Z) - A Generative Language Model for Few-shot Aspect-Based Sentiment Analysis [90.24921443175514]
We focus on aspect-based sentiment analysis, which involves extracting aspect term, category, and predicting their corresponding polarities.
We propose to reformulate the extraction and prediction tasks into the sequence generation task, using a generative language model with unidirectional attention.
Our approach outperforms the previous state-of-the-art (based on BERT) on average performance by a large margins in few-shot and full-shot settings.
arXiv Detail & Related papers (2022-04-11T18:31:53Z) - Class-Incremental Learning with Strong Pre-trained Models [97.84755144148535]
Class-incremental learning (CIL) has been widely studied under the setting of starting from a small number of classes (base classes)
We explore an understudied real-world setting of CIL that starts with a strong model pre-trained on a large number of base classes.
Our proposed method is robust and generalizes to all analyzed CIL settings.
arXiv Detail & Related papers (2022-04-07T17:58:07Z) - Uncertainty Estimation for Language Reward Models [5.33024001730262]
Language models can learn a range of capabilities from unsupervised training on text corpora.
It is often easier for humans to choose between options than to provide labeled data, and prior work has achieved state-of-the-art performance by training a reward model from such preference comparisons.
We seek to address these problems via uncertainty estimation, which can improve sample efficiency and robustness using active learning and risk-averse reinforcement learning.
arXiv Detail & Related papers (2022-03-14T20:13:21Z) - A Lagrangian Duality Approach to Active Learning [119.36233726867992]
We consider the batch active learning problem, where only a subset of the training data is labeled.
We formulate the learning problem using constrained optimization, where each constraint bounds the performance of the model on labeled samples.
We show, via numerical experiments, that our proposed approach performs similarly to or better than state-of-the-art active learning methods.
arXiv Detail & Related papers (2022-02-08T19:18:49Z) - Active Learning for Sequence Tagging with Deep Pre-trained Models and
Bayesian Uncertainty Estimates [52.164757178369804]
Recent advances in transfer learning for natural language processing in conjunction with active learning open the possibility to significantly reduce the necessary annotation budget.
We conduct an empirical study of various Bayesian uncertainty estimation methods and Monte Carlo dropout options for deep pre-trained models in the active learning framework.
We also demonstrate that to acquire instances during active learning, a full-size Transformer can be substituted with a distilled version, which yields better computational performance.
arXiv Detail & Related papers (2021-01-20T13:59:25Z) - Identifying Wrongly Predicted Samples: A Method for Active Learning [6.976600214375139]
We propose a simple sample selection criterion that moves beyond uncertainty.
We show state-of-the-art results and better rates at identifying wrongly predicted samples.
arXiv Detail & Related papers (2020-10-14T09:00:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.