ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction
- URL: http://arxiv.org/abs/2304.03870v3
- Date: Fri, 1 Mar 2024 00:55:08 GMT
- Title: ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction
- Authors: Jiefeng Chen, Jinsung Yoon, Sayna Ebrahimi, Sercan Arik, Somesh Jha,
Tomas Pfister
- Abstract summary: Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain.
Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples.
In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain.
- Score: 56.001808843574395
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Selective prediction aims to learn a reliable model that abstains from making
predictions when uncertain. These predictions can then be deferred to humans
for further evaluation. As an everlasting challenge for machine learning, in
many real-world scenarios, the distribution of test data is different from the
training data. This results in more inaccurate predictions, and often increased
dependence on humans, which can be difficult and expensive. Active learning
aims to lower the overall labeling effort, and hence human dependence, by
querying the most informative examples. Selective prediction and active
learning have been approached from different angles, with the connection
between them missing. In this work, we introduce a new learning paradigm,
active selective prediction, which aims to query more informative samples from
the shifted target domain while increasing accuracy and coverage. For this new
paradigm, we propose a simple yet effective approach, ASPEST, that utilizes
ensembles of model snapshots with self-training with their aggregated outputs
as pseudo labels. Extensive experiments on numerous image, text and structured
datasets, which suffer from domain shifts, demonstrate that ASPEST can
significantly outperform prior work on selective prediction and active learning
(e.g. on the MNIST$\to$SVHN benchmark with the labeling budget of 100, ASPEST
improves the AUACC metric from 79.36% to 88.84%) and achieves more optimal
utilization of humans in the loop.
Related papers
- Downstream-Pretext Domain Knowledge Traceback for Active Learning [138.02530777915362]
We propose a downstream-pretext domain knowledge traceback (DOKT) method that traces the data interactions of downstream knowledge and pre-training guidance.
DOKT consists of a traceback diversity indicator and a domain-based uncertainty estimator.
Experiments conducted on ten datasets show that our model outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-20T01:34:13Z) - Overcoming Overconfidence for Active Learning [1.2776312584227847]
We present two novel methods to address the problem of overconfidence that arises in the active learning scenario.
The first is an augmentation strategy named Cross-Mix-and-Mix (CMaM), which aims to calibrate the model by expanding the limited training distribution.
The second is a selection strategy named Ranked Margin Sampling (RankedMS), which prevents choosing data that leads to overly confident predictions.
arXiv Detail & Related papers (2023-08-21T09:04:54Z) - Time Series Contrastive Learning with Information-Aware Augmentations [57.45139904366001]
A key component of contrastive learning is to select appropriate augmentations imposing some priors to construct feasible positive samples.
How to find the desired augmentations of time series data that are meaningful for given contrastive learning tasks and datasets remains an open question.
We propose a new contrastive learning approach with information-aware augmentations, InfoTS, that adaptively selects optimal augmentations for time series representation learning.
arXiv Detail & Related papers (2023-03-21T15:02:50Z) - Zero-shot meta-learning for small-scale data from human subjects [10.320654885121346]
We develop a framework to rapidly adapt to a new prediction task with limited training data for out-of-sample test data.
Our model learns the latent treatment effects of each intervention and, by design, can naturally handle multi-task predictions.
Our model has implications for improved generalization of small-size human studies to the wider population.
arXiv Detail & Related papers (2022-03-29T17:42:04Z) - Uncertainty Estimation for Language Reward Models [5.33024001730262]
Language models can learn a range of capabilities from unsupervised training on text corpora.
It is often easier for humans to choose between options than to provide labeled data, and prior work has achieved state-of-the-art performance by training a reward model from such preference comparisons.
We seek to address these problems via uncertainty estimation, which can improve sample efficiency and robustness using active learning and risk-averse reinforcement learning.
arXiv Detail & Related papers (2022-03-14T20:13:21Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Just Label What You Need: Fine-Grained Active Selection for Perception
and Prediction through Partially Labeled Scenes [78.23907801786827]
We introduce generalizations that ensure that our approach is both cost-aware and allows for fine-grained selection of examples through partially labeled scenes.
Our experiments on a real-world, large-scale self-driving dataset suggest that fine-grained selection can improve the performance across perception, prediction, and downstream planning tasks.
arXiv Detail & Related papers (2021-04-08T17:57:41Z) - A framework for predicting, interpreting, and improving Learning
Outcomes [0.0]
We develop an Embibe Score Quotient model (ESQ) to predict test scores based on observed academic, behavioral and test-taking features of a student.
ESQ can be used to predict the future scoring potential of a student as well as offer personalized learning nudges.
arXiv Detail & Related papers (2020-10-06T11:22:27Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.