論文の概要: Using Particle Swarm Optimization as Pathfinding Strategy in a Space
with Obstacles
- arxiv url: http://arxiv.org/abs/2201.07212v1
- Date: Thu, 16 Dec 2021 12:16:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-23 22:13:52.158425
- Title: Using Particle Swarm Optimization as Pathfinding Strategy in a Space
with Obstacles
- Title(参考訳): 障害物のある空間における経路探索戦略としての粒子群最適化
- Authors: David
- Abstract要約: Particle Swarm Optimization (PSO) は集団適応最適化に基づく探索アルゴリズムである。
本稿では,幅広いアプリケーションを対象としたパスプランニングの効率化を図るため,パスフィニング戦略を提案する。
- 参考スコア(独自算出の注目度): 4.899469599577755
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Particle swarm optimization (PSO) is a search algorithm based on stochastic
and population-based adaptive optimization. In this paper, a pathfinding
strategy is proposed to improve the efficiency of path planning for a broad
range of applications. This study aims to investigate the effect of PSO
parameters (numbers of particle, weight constant, particle constant, and global
constant) on algorithm performance to give solution paths. Increasing the PSO
parameters makes the swarm move faster to the target point but takes a long
time to converge because of too many random movements, and vice versa. From a
variety of simulations with different parameters, the PSO algorithm is proven
to be able to provide a solution path in a space with obstacles.
- Abstract(参考訳): particle swarm optimization (pso) は確率的および集団的適応最適化に基づく探索アルゴリズムである。
本稿では,広い範囲のアプリケーションにおいてパスプランニングの効率を向上させるためのパスファインディング戦略を提案する。
本研究の目的は, PSOパラメータ(粒子数, 重み定数, 粒子定数, グローバル定数)が解経路を与えるアルゴリズム性能に及ぼす影響を検討することである。
PSOパラメータの増大により、Swarmは目標点まで速く移動するが、ランダムな動きが多すぎるために収束するのに長い時間がかかる。
様々なパラメータを持つ様々なシミュレーションから、psoアルゴリズムは障害物のある空間において解経路を提供できることが証明されている。
関連論文リスト
- Path Planning in a dynamic environment using Spherical Particle Swarm Optimization [0.0]
本研究では, 球面ベクトルを用いた粒子群最適化技術を用いたUAV用動的パスプランナ(DPP)を提案する。
経路は、チェックポイントを再計画する一組の経路として構築されている。経路長、安全、姿勢、経路平滑性はすべて、最適な経路がどうあるべきかを決定する上で考慮される。
実際のデジタル標高モデルを用いて4つのテストシナリオが実施される。それぞれのテストは、SPSO-DPPが安全で効率的な経路セグメントを生成することができるかを示すために、パスの長さと安全性に異なる優先順位を与える。
論文 参考訳(メタデータ) (2024-03-19T13:56:34Z) - Thompson sampling for improved exploration in GFlowNets [75.89693358516944]
生成フローネットワーク(Generative Flow Networks, GFlowNets)は、合成対象物上の分布からのサンプリングを、学習可能なアクションポリシーを用いたシーケンシャルな意思決定問題として扱う、アモータイズされた変分推論アルゴリズムである。
2つの領域において、TS-GFNは、過去の研究で使われたオフ・ポリティクス・サーベイ・ストラテジーよりも、探索を改善し、目標分布への収束を早くすることを示す。
論文 参考訳(メタデータ) (2023-06-30T14:19:44Z) - PAO: A general particle swarm algorithm with exact dynamics and
closed-form transition densities [0.0]
粒子群最適化(PSO)アプローチは多くの応用分野において非常に効果的であることが証明されている。
本研究では, PSOアルゴリズムの高一般性, 解釈可能な変種であるパーティクル・アトラクター・アルゴリズム (PAO) を提案する。
論文 参考訳(メタデータ) (2023-04-28T16:19:27Z) - Local policy search with Bayesian optimization [73.0364959221845]
強化学習は、環境との相互作用によって最適な政策を見つけることを目的としている。
局所探索のための政策勾配は、しばしばランダムな摂動から得られる。
目的関数の確率モデルとその勾配を用いたアルゴリズムを開発する。
論文 参考訳(メタデータ) (2021-06-22T16:07:02Z) - Learning Space Partitions for Path Planning [54.475949279050596]
PlaLaMは2次元ナビゲーションタスクにおける既存の経路計画手法よりも優れており、特に難解な局所最適化の存在下では優れている。
これらは高マルチモーダルな実世界のタスクに移行し、コンパイラフェーズでは最大245%、分子設計では最大0.4の強いベースラインを0-1スケールで上回ります。
論文 参考訳(メタデータ) (2021-06-19T18:06:11Z) - Safety-enhanced UAV Path Planning with Spherical Vector-based Particle
Swarm Optimization [5.076419064097734]
本稿では,無人航空機(UAV)の経路計画問題に対処するため,球面ベクトルベース粒子群最適化 (SPSO) という新しいアルゴリズムを提案する。
コスト関数が最初に定式化され、経路計画がUAVの実用的で安全な運用に必要な要件と制約を組み込んだ最適化問題に変換される。
SPSOは、UAVの構成空間を効率的に探索することでコスト関数を最小化する最適経路を見つけるために使用される。
論文 参考訳(メタデータ) (2021-04-13T06:45:11Z) - Directed particle swarm optimization with Gaussian-process-based
function forecasting [15.733136147164032]
パーティクルスワム最適化 (PSO) は、探索空間を囲む一組の候補解を、ランダム化されたステップ長を持つ最もよく知られたグローバルおよびローカルな解へ移動させる反復探索法である。
本アルゴリズムは探索的・搾取的行動に対して望ましい特性が得られることを示す。
論文 参考訳(メタデータ) (2021-02-08T13:02:57Z) - Motion-Encoded Particle Swarm Optimization for Moving Target Search
Using UAVs [4.061135251278187]
本稿では,無人航空機(UAV)を用いた移動目標探索のための動き符号化粒子群最適化(MPSO)という新しいアルゴリズムを提案する。
提案するMPSOは,PSOアルゴリズムで粒子生成に進化する一連のUAV運動経路として探索軌道を符号化することにより,その問題を解決するために開発された。
既存手法による広範囲なシミュレーションの結果,提案手法は検出性能を24%,時間性能を4.71倍改善した。
論文 参考訳(メタデータ) (2020-10-05T14:17:49Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
適応性は現代最適化理論において重要であるが、研究されていない性質である。
提案アルゴリズムは,PL目標に対して既存のアルゴリズムよりも優れた性能を保ちながら,PL目標に対して最適な収束性を実現することを実証した。
論文 参考訳(メタデータ) (2020-02-13T05:42:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。