Conservative Distributional Reinforcement Learning with Safety
Constraints
- URL: http://arxiv.org/abs/2201.07286v2
- Date: Sat, 8 Jul 2023 06:49:46 GMT
- Title: Conservative Distributional Reinforcement Learning with Safety
Constraints
- Authors: Hengrui Zhang, Youfang Lin, Sheng Han, Shuo Wang, Kai Lv
- Abstract summary: Safety exploration can be regarded as a constrained Markov decision problem where the expected long-term cost is constrained.
Previous off-policy algorithms convert the constrained optimization problem into the corresponding unconstrained dual problem by introducing the Lagrangian relaxation technique.
We present a novel off-policy reinforcement learning algorithm called Conservative Distributional Maximum a Posteriori Policy Optimization.
- Score: 22.49025480735792
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Safety exploration can be regarded as a constrained Markov decision problem
where the expected long-term cost is constrained. Previous off-policy
algorithms convert the constrained optimization problem into the corresponding
unconstrained dual problem by introducing the Lagrangian relaxation technique.
However, the cost function of the above algorithms provides inaccurate
estimations and causes the instability of the Lagrange multiplier learning. In
this paper, we present a novel off-policy reinforcement learning algorithm
called Conservative Distributional Maximum a Posteriori Policy Optimization
(CDMPO). At first, to accurately judge whether the current situation satisfies
the constraints, CDMPO adapts distributional reinforcement learning method to
estimate the Q-function and C-function. Then, CDMPO uses a conservative value
function loss to reduce the number of violations of constraints during the
exploration process. In addition, we utilize Weighted Average Proportional
Integral Derivative (WAPID) to update the Lagrange multiplier stably. Empirical
results show that the proposed method has fewer violations of constraints in
the early exploration process. The final test results also illustrate that our
method has better risk control.
Related papers
- Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based reinforcement learning.
We propose a new uncertainty Bellman equation (UBE) whose solution converges to the true posterior variance over values.
We introduce a general-purpose policy optimization algorithm, Q-Uncertainty Soft Actor-Critic (QU-SAC) that can be applied for either risk-seeking or risk-averse policy optimization.
arXiv Detail & Related papers (2023-12-07T15:55:58Z) - Primal-Dual Contextual Bayesian Optimization for Control System Online
Optimization with Time-Average Constraints [21.38692458445459]
This paper studies the problem of online performance optimization of constrained closed-loop control systems.
A primal-dual contextual Bayesian optimization algorithm is proposed that achieves sublinear cumulative regret with respect to the dynamic optimal solution.
arXiv Detail & Related papers (2023-04-12T18:37:52Z) - Learning to Optimize with Stochastic Dominance Constraints [103.26714928625582]
In this paper, we develop a simple yet efficient approach for the problem of comparing uncertain quantities.
We recast inner optimization in the Lagrangian as a learning problem for surrogate approximation, which bypasses apparent intractability.
The proposed light-SD demonstrates superior performance on several representative problems ranging from finance to supply chain management.
arXiv Detail & Related papers (2022-11-14T21:54:31Z) - Penalized Proximal Policy Optimization for Safe Reinforcement Learning [68.86485583981866]
We propose Penalized Proximal Policy Optimization (P3O), which solves the cumbersome constrained policy iteration via a single minimization of an equivalent unconstrained problem.
P3O utilizes a simple-yet-effective penalty function to eliminate cost constraints and removes the trust-region constraint by the clipped surrogate objective.
We show that P3O outperforms state-of-the-art algorithms with respect to both reward improvement and constraint satisfaction on a set of constrained locomotive tasks.
arXiv Detail & Related papers (2022-05-24T06:15:51Z) - A Stochastic Composite Augmented Lagrangian Method For Reinforcement
Learning [9.204659134755795]
We consider the linear programming (LP) formulation for deep reinforcement learning.
The augmented Lagrangian method suffers the double-sampling obstacle in solving the LP.
A deep parameterized augment Lagrangian method is proposed.
arXiv Detail & Related papers (2021-05-20T13:08:06Z) - Logistic Q-Learning [87.00813469969167]
We propose a new reinforcement learning algorithm derived from a regularized linear-programming formulation of optimal control in MDPs.
The main feature of our algorithm is a convex loss function for policy evaluation that serves as a theoretically sound alternative to the widely used squared Bellman error.
arXiv Detail & Related papers (2020-10-21T17:14:31Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Upper Confidence Primal-Dual Reinforcement Learning for CMDP with
Adversarial Loss [145.54544979467872]
We consider online learning for episodically constrained Markov decision processes (CMDPs)
We propose a new emphupper confidence primal-dual algorithm, which only requires the trajectories sampled from the transition model.
Our analysis incorporates a new high-probability drift analysis of Lagrange multiplier processes into the celebrated regret analysis of upper confidence reinforcement learning.
arXiv Detail & Related papers (2020-03-02T05:02:23Z) - Cautious Reinforcement Learning via Distributional Risk in the Dual
Domain [45.17200683056563]
We study the estimation of risk-sensitive policies in reinforcement learning problems defined by a Markov Decision Process (MDPs) whose state and action spaces are countably finite.
We propose a new definition of risk, which we call caution, as a penalty function added to the dual objective of the linear programming (LP) formulation of reinforcement learning.
arXiv Detail & Related papers (2020-02-27T23:18:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.