論文の概要: Weakly Supervised Semantic Segmentation of Remote Sensing Images for
Tree Species Classification Based on Explanation Methods
- arxiv url: http://arxiv.org/abs/2201.07495v1
- Date: Wed, 19 Jan 2022 09:32:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-20 20:01:17.598426
- Title: Weakly Supervised Semantic Segmentation of Remote Sensing Images for
Tree Species Classification Based on Explanation Methods
- Title(参考訳): 説明法に基づく樹木分類のためのリモートセンシング画像の弱教師付きセマンティックセマンティックセグメンテーション
- Authors: Steve Ahlswede, Nimisha Thekke-Madam, Christian Schulz, Birgit
Kleinschmit, Beg\"um Demir
- Abstract要約: 画像レベルラベルのみを用いた弱教師付きセマンティックセグメンテーションにおける説明手法の有効性を検討する。
実験結果から, 解析手法は木種の同定に極めて有用であることが示唆された。
- 参考スコア(独自算出の注目度): 1.2074552857379273
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The collection of a high number of pixel-based labeled training samples for
tree species identification is time consuming and costly in operational
forestry applications. To address this problem, in this paper we investigate
the effectiveness of explanation methods for deep neural networks in performing
weakly supervised semantic segmentation using only image-level labels.
Specifically, we consider four methods:i) class activation maps (CAM); ii)
gradient-based CAM; iii) pixel correlation module; and iv) self-enhancing maps
(SEM). We compare these methods with each other using both quantitative and
qualitative measures of their segmentation accuracy, as well as their
computational requirements. Experimental results obtained on an aerial image
archive show that:i) considered explanation techniques are highly relevant for
the identification of tree species with weak supervision; and ii) the SEM
outperforms the other considered methods. The code for this paper is publicly
available at https://git.tu-berlin.de/rsim/rs_wsss.
- Abstract(参考訳): 木種識別のための大量のピクセルベースのラベル付きトレーニングサンプルの収集は、運用林業への応用に時間と費用がかかる。
本稿では,画像レベルのラベルのみを用いて,弱い教師付きセマンティックセマンティックセグメンテーションを行う際のディープニューラルネットワークの説明手法の有効性を検討する。
具体的には、以下の4つの方法を考える:i)クラスアクティベーションマップ(cam)
二 勾配に基づくCAM
三 画素相関モジュール、及び
iv)自己啓発マップ(sem)。
我々はこれらの手法を,その分節精度の定量的および定性的な測定値と計算要求値を用いて比較する。
航空画像アーカイブで得られた実験結果から, 説明手法は, 監督の弱い樹木種の識別に極めて重要であることが明らかとなった。
ii) semは、他の検討方法に勝る。
この論文のコードはhttps://git.tu-berlin.de/rsim/rs_wsssで公開されている。
関連論文リスト
- Dual-branch PolSAR Image Classification Based on GraphMAE and Local Feature Extraction [22.39266854681996]
本稿では,生成的自己教師型学習に基づく二分岐分類モデルを提案する。
最初のブランチはスーパーピクセルブランチであり、生成的な自己教師付きグラフマスキングオートエンコーダを用いてスーパーピクセルレベルの偏光度表現を学習する。
より詳細な分類結果を得るために、畳み込みニューラルネットワークに基づく画素ブランチをさらに組み込んで画素レベルの特徴を学習する。
論文 参考訳(メタデータ) (2024-08-08T08:17:50Z) - Annotation Cost-Efficient Active Learning for Deep Metric Learning Driven Remote Sensing Image Retrieval [3.2109665109975696]
ANNEALは、類似した、異種のイメージペアで構成された、小さくて情報的なトレーニングセットを作成することを目的としている。
不確実性と多様性の基準を組み合わせることにより、画像対の情報性を評価する。
このアノテート方式は、ランド・ユース・ランド・カバー・クラスラベルによるアノテート画像と比較して、アノテーションコストを著しく削減する。
論文 参考訳(メタデータ) (2024-06-14T15:08:04Z) - Auxiliary Tasks Enhanced Dual-affinity Learning for Weakly Supervised
Semantic Segmentation [79.05949524349005]
AuxSegNet+は、サリエンシマップから豊富な情報を探索する弱教師付き補助学習フレームワークである。
また,サリエンシとセグメンテーションの特徴マップから画素レベルの親和性を学習するためのクロスタスク親和性学習機構を提案する。
論文 参考訳(メタデータ) (2024-03-02T10:03:21Z) - An Explainable Model-Agnostic Algorithm for CNN-based Biometrics
Verification [55.28171619580959]
本稿では,生体認証環境下でのLIME(Local Interpretable Model-Agnostic Explanations)AI手法の適用について述べる。
論文 参考訳(メタデータ) (2023-07-25T11:51:14Z) - Feature Activation Map: Visual Explanation of Deep Learning Models for
Image Classification [17.373054348176932]
本研究では,機能活性化マップ (FAM) と呼ばれるポストホック解釈ツールを提案する。
FAMは、FC層を分類器として使用せずにディープラーニングモデルを解釈できる。
提案したFAMアルゴリズムの有効性を実証するために,10種類の深層学習モデルを用いて,少数ショット画像分類,コントラスト学習画像分類,画像検索タスクを行った。
論文 参考訳(メタデータ) (2023-07-11T05:33:46Z) - CorrMatch: Label Propagation via Correlation Matching for
Semi-Supervised Semantic Segmentation [73.89509052503222]
本稿では、CorrMatchと呼ばれる、単純だが実行可能な半教師付きセマンティックセマンティックセマンティックセマンティクス手法を提案する。
相関写像は、同一カテゴリのクラスタリングピクセルを容易に実現できるだけでなく、良好な形状情報も含んでいることを観察する。
我々は,高信頼画素を拡大し,さらに掘り出すために,画素の対の類似性をモデル化して画素伝搬を行う。
そして、相関地図から抽出した正確なクラス非依存マスクを用いて、領域伝搬を行い、擬似ラベルを強化する。
論文 参考訳(メタデータ) (2023-06-07T10:02:29Z) - High-fidelity Pseudo-labels for Boosting Weakly-Supervised Segmentation [17.804090651425955]
画像レベルの弱い教師付きセグメンテーション(WSSS)は、トレーニング中にセグメンテーションマスクを代理することで、通常膨大なデータアノテーションコストを削減する。
本研究は,GAPの代替となる重要サンプリングと特徴類似性損失という,CAMを改善するための2つの手法に基づく。
複数の独立二項問題の後部二項問題に基づいて両手法を再構成する。
パフォーマンスが向上し、より一般的なものになり、事実上あらゆるWSSSメソッドを増強できるアドオンメソッドが出来上がります。
論文 参考訳(メタデータ) (2023-04-05T17:43:57Z) - Pseudo Pixel-level Labeling for Images with Evolving Content [5.573543601558405]
画像の手動アノテーションの労力を削減するために,擬似ピクセルレベルのラベル生成手法を提案する。
VGGとResNetのバックボーンを用いた2つのセマンティックセグメンテーションモデルを、擬似ラベリング法と最先端手法を用いてラベル付けした画像上で学習する。
以上の結果から, トレーニングプロセスにおいて, 最先端手法を用いて生成したデータの代わりに擬似ラベルを用いることで, VGGおよびResNetに基づくセマンティックセマンティックセグメンテーションモデルの平均IoUと周波数重み付きIoUを3.36%, 2.58%, 10倍改善することがわかった。
論文 参考訳(メタデータ) (2021-05-20T18:14:19Z) - Convolutional Neural Networks from Image Markers [62.997667081978825]
特徴 画像マーカーからの学習(FLIM)は、ごく少数の画像でユーザーが描画したストロークから、バックプロパゲーションのない畳み込みフィルタを推定するために最近提案されました。
本稿では、フルコネクテッド層に対してFLIMを拡張し、異なる画像分類問題について実証する。
その結果、FLIMベースの畳み込みニューラルネットワークは、バックプロパゲーションによってゼロから訓練された同じアーキテクチャを上回ります。
論文 参考訳(メタデータ) (2020-12-15T22:58:23Z) - Hierarchical Image Classification using Entailment Cone Embeddings [68.82490011036263]
まずラベル階層の知識を任意のCNNベースの分類器に注入する。
画像からの視覚的セマンティクスと組み合わせた外部セマンティクス情報の利用が全体的な性能を高めることを実証的に示す。
論文 参考訳(メタデータ) (2020-04-02T10:22:02Z) - Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning [86.45526827323954]
弱教師付きセマンティックセグメンテーションは、トレーニングのためにピクセル単位のラベル情報が提供されないため、難しい課題である。
このようなペア関係を学習するための反復アルゴリズムを提案する。
本稿では,提案アルゴリズムが最先端手法に対して好適に動作することを示す。
論文 参考訳(メタデータ) (2020-02-19T10:32:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。