Learned Cone-Beam CT Reconstruction Using Neural Ordinary Differential
Equations
- URL: http://arxiv.org/abs/2201.07562v1
- Date: Wed, 19 Jan 2022 12:32:38 GMT
- Title: Learned Cone-Beam CT Reconstruction Using Neural Ordinary Differential
Equations
- Authors: Mareike Thies, Fabian Wagner, Mingxuan Gu, Lukas Folle, Lina Felsner,
Andreas Maier
- Abstract summary: Learned iterative reconstruction algorithms for inverse problems offer the flexibility to combine analytical knowledge about the problem with modules learned from data.
In computed tomography, extending such approaches from 2D fan-beam to 3D cone-beam data is challenging due to the prohibitively high GPU memory.
This paper proposes to use neural ordinary differential equations to solve the reconstruction problem in a residual formulation via numerical integration.
- Score: 8.621792868567018
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learned iterative reconstruction algorithms for inverse problems offer the
flexibility to combine analytical knowledge about the problem with modules
learned from data. This way, they achieve high reconstruction performance while
ensuring consistency with the measured data. In computed tomography, extending
such approaches from 2D fan-beam to 3D cone-beam data is challenging due to the
prohibitively high GPU memory that would be needed to train such models. This
paper proposes to use neural ordinary differential equations to solve the
reconstruction problem in a residual formulation via numerical integration. For
training, there is no need to backpropagate through several unrolled network
blocks nor through the internals of the solver. Instead, the gradients are
obtained very memory-efficiently in the neural ODE setting allowing for
training on a single consumer graphics card. The method is able to reduce the
root mean squared error by over 30% compared to the best performing classical
iterative reconstruction algorithm and produces high quality cone-beam
reconstructions even in a sparse view scenario.
Related papers
- R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3D Gaussian splatting (3DGS) has shown promising results in rendering image and surface reconstruction.
This paper introduces R2$-Gaussian, the first 3DGS-based framework for sparse-view tomographic reconstruction.
arXiv Detail & Related papers (2024-05-31T08:39:02Z) - Curvature regularization for Non-line-of-sight Imaging from
Under-sampled Data [5.591221518341613]
Non-line-of-sight (NLOS) imaging aims to reconstruct the three-dimensional hidden scenes from the data measured in the line-of-sight.
We propose novel NLOS reconstruction models based on curvature regularization.
We evaluate the proposed algorithms on both synthetic and real datasets.
arXiv Detail & Related papers (2023-01-01T14:10:43Z) - Simulator-Based Self-Supervision for Learned 3D Tomography
Reconstruction [34.93595625809309]
Prior machine learning approaches require reference reconstructions computed by another algorithm for training.
We train our model in a fully self-supervised manner using only noisy 2D X-ray data.
Our results show significantly higher visual fidelity and better PSNR over techniques that rely on existing reconstructions.
arXiv Detail & Related papers (2022-12-14T13:21:37Z) - A Recursively Recurrent Neural Network (R2N2) Architecture for Learning
Iterative Algorithms [64.3064050603721]
We generalize Runge-Kutta neural network to a recurrent neural network (R2N2) superstructure for the design of customized iterative algorithms.
We demonstrate that regular training of the weight parameters inside the proposed superstructure on input/output data of various computational problem classes yields similar iterations to Krylov solvers for linear equation systems, Newton-Krylov solvers for nonlinear equation systems, and Runge-Kutta solvers for ordinary differential equations.
arXiv Detail & Related papers (2022-11-22T16:30:33Z) - Loop Unrolled Shallow Equilibrium Regularizer (LUSER) -- A
Memory-Efficient Inverse Problem Solver [26.87738024952936]
In inverse problems we aim to reconstruct some underlying signal of interest from potentially corrupted and often ill-posed measurements.
We propose an LU algorithm with shallow equilibrium regularizers (L)
These implicit models are as expressive as deeper convolutional networks, but far more memory efficient during training.
arXiv Detail & Related papers (2022-10-10T19:50:37Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
Unrolled neural networks have recently achieved state-of-the-art accelerated MRI reconstruction.
These networks unroll iterative optimization algorithms by alternating between physics-based consistency and neural-network based regularization.
We propose Greedy LEarning for Accelerated MRI reconstruction, an efficient training strategy for high-dimensional imaging settings.
arXiv Detail & Related papers (2022-07-18T06:01:29Z) - A memory-efficient neural ODE framework based on high-level adjoint
differentiation [4.063868707697316]
We present a new neural ODE framework, PNODE, based on high-level discrete algorithmic differentiation.
We show that PNODE achieves the highest memory efficiency when compared with other reverse-accurate methods.
arXiv Detail & Related papers (2022-06-02T20:46:26Z) - Data-Driven Shadowgraph Simulation of a 3D Object [50.591267188664666]
We are replacing the numerical code by a computationally cheaper projection based surrogate model.
The model is able to approximate the electric fields at a given time without computing all preceding electric fields as required by numerical methods.
This model has shown a good quality reconstruction in a problem of perturbation of data within a narrow range of simulation parameters and can be used for input data of large size.
arXiv Detail & Related papers (2021-06-01T08:46:04Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
Reconstructing high-fidelity 3D objects from sparse, partial observation is crucial for various applications in computer vision, robotics, and graphics.
Recent neural implicit modeling methods show promising results on synthetic or dense datasets.
But, they perform poorly on real-world data that is sparse and noisy.
This paper analyzes the root cause of such deficient performance of a popular neural implicit model.
arXiv Detail & Related papers (2021-01-18T03:24:48Z) - Learning Deformable Tetrahedral Meshes for 3D Reconstruction [78.0514377738632]
3D shape representations that accommodate learning-based 3D reconstruction are an open problem in machine learning and computer graphics.
Previous work on neural 3D reconstruction demonstrated benefits, but also limitations, of point cloud, voxel, surface mesh, and implicit function representations.
We introduce Deformable Tetrahedral Meshes (DefTet) as a particular parameterization that utilizes volumetric tetrahedral meshes for the reconstruction problem.
arXiv Detail & Related papers (2020-11-03T02:57:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.