Curvature regularization for Non-line-of-sight Imaging from
Under-sampled Data
- URL: http://arxiv.org/abs/2301.00406v4
- Date: Wed, 6 Mar 2024 09:21:53 GMT
- Title: Curvature regularization for Non-line-of-sight Imaging from
Under-sampled Data
- Authors: Rui Ding, Juntian Ye, Qifeng Gao, Feihu Xu, Yuping Duan
- Abstract summary: Non-line-of-sight (NLOS) imaging aims to reconstruct the three-dimensional hidden scenes from the data measured in the line-of-sight.
We propose novel NLOS reconstruction models based on curvature regularization.
We evaluate the proposed algorithms on both synthetic and real datasets.
- Score: 5.591221518341613
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Non-line-of-sight (NLOS) imaging aims to reconstruct the three-dimensional
hidden scenes from the data measured in the line-of-sight, which uses photon
time-of-flight information encoded in light after multiple diffuse reflections.
The under-sampled scanning data can facilitate fast imaging. However, the
resulting reconstruction problem becomes a serious ill-posed inverse problem,
the solution of which is highly possibility to be degraded due to noises and
distortions. In this paper, we propose novel NLOS reconstruction models based
on curvature regularization, i.e., the object-domain curvature regularization
model and the dual (signal and object)-domain curvature regularization model.
In what follows, we develop efficient optimization algorithms relying on the
alternating direction method of multipliers (ADMM) with the backtracking
stepsize rule, for which all solvers can be implemented on GPUs. We evaluate
the proposed algorithms on both synthetic and real datasets, which achieve
state-of-the-art performance, especially in the compressed sensing setting.
Based on GPU computing, our algorithm is the most effective among iterative
methods, balancing reconstruction quality and computational time. All our codes
and data are available at https://github.com/Duanlab123/CurvNLOS.
Related papers
- bit2bit: 1-bit quanta video reconstruction via self-supervised photon prediction [57.199618102578576]
We propose bit2bit, a new method for reconstructing high-quality image stacks at original resolution from sparse binary quantatemporal image data.
Inspired by recent work on Poisson denoising, we developed an algorithm that creates a dense image sequence from sparse binary photon data.
We present a novel dataset containing a wide range of real SPAD high-speed videos under various challenging imaging conditions.
arXiv Detail & Related papers (2024-10-30T17:30:35Z) - A Mirror Descent-Based Algorithm for Corruption-Tolerant Distributed Gradient Descent [57.64826450787237]
We show how to analyze the behavior of distributed gradient descent algorithms in the presence of adversarial corruptions.
We show how to use ideas from (lazy) mirror descent to design a corruption-tolerant distributed optimization algorithm.
Experiments based on linear regression, support vector classification, and softmax classification on the MNIST dataset corroborate our theoretical findings.
arXiv Detail & Related papers (2024-07-19T08:29:12Z) - Linear Anchored Gaussian Mixture Model for Location and Width Computations of Objects in Thick Line Shape [1.7205106391379021]
3D image gray level representation is considered as a finite mixture model of a statistical distribution.
Expectation-Maximization algorithm (Algo1) using the original image as input data is used to estimate the model parameters.
modified EM algorithm (Algo2) is detailed.
arXiv Detail & Related papers (2024-04-03T20:05:00Z) - Generalization of pixel-wise phase estimation by CNN and improvement of
phase-unwrapping by MRF optimization for one-shot 3D scan [0.621405559652172]
Active stereo technique using single pattern projection, a.k.a. one-shot 3D scan, have drawn a wide attention from industry, medical purposes, etc.
One severe drawback of one-shot 3D scan is sparse reconstruction.
We propose a pixel-wise technique for one-shot scan, which is applicable to any types of static pattern if the pattern is regular and periodic.
arXiv Detail & Related papers (2023-09-26T10:45:04Z) - Poisson-Gaussian Holographic Phase Retrieval with Score-based Image
Prior [19.231581775644617]
We propose a new algorithm called "AWFS" that uses the accelerated Wirtinger flow (AWF) with a score function as generative prior.
We calculate the gradient of the log-likelihood function for PR and determine the Lipschitz constant.
We provide theoretical analysis that establishes a critical-point convergence guarantee for the proposed algorithm.
arXiv Detail & Related papers (2023-05-12T18:08:47Z) - Loop Unrolled Shallow Equilibrium Regularizer (LUSER) -- A
Memory-Efficient Inverse Problem Solver [26.87738024952936]
In inverse problems we aim to reconstruct some underlying signal of interest from potentially corrupted and often ill-posed measurements.
We propose an LU algorithm with shallow equilibrium regularizers (L)
These implicit models are as expressive as deeper convolutional networks, but far more memory efficient during training.
arXiv Detail & Related papers (2022-10-10T19:50:37Z) - Image reconstruction algorithms in radio interferometry: from
handcrafted to learned denoisers [7.1439425093981574]
We introduce a new class of iterative image reconstruction algorithms for radio interferometry, inspired by plug-and-play methods.
The approach consists in learning a prior image model by training a deep neural network (DNN) as a denoiser.
We plug the learned denoiser into the forward-backward optimization algorithm, resulting in a simple iterative structure alternating a denoising step with a gradient-descent data-fidelity step.
arXiv Detail & Related papers (2022-02-25T20:26:33Z) - InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering [55.70938412352287]
We present an information-theoretic regularization technique for few-shot novel view synthesis based on neural implicit representation.
The proposed approach minimizes potential reconstruction inconsistency that happens due to insufficient viewpoints.
We achieve consistently improved performance compared to existing neural view synthesis methods by large margins on multiple standard benchmarks.
arXiv Detail & Related papers (2021-12-31T11:56:01Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
We propose an effective non-blind deconvolution approach by learning discriminative shrinkage functions to implicitly model these terms.
Experimental results show that the proposed method performs favorably against the state-of-the-art ones in terms of efficiency and accuracy.
arXiv Detail & Related papers (2021-11-27T12:12:57Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - Human Body Model Fitting by Learned Gradient Descent [48.79414884222403]
We propose a novel algorithm for the fitting of 3D human shape to images.
We show that this algorithm is fast (avg. 120ms convergence), robust to dataset, and achieves state-of-the-art results on public evaluation datasets.
arXiv Detail & Related papers (2020-08-19T14:26:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.