論文の概要: Summarising and Comparing Agent Dynamics with Contrastive Spatiotemporal
Abstraction
- arxiv url: http://arxiv.org/abs/2201.07749v1
- Date: Mon, 17 Jan 2022 11:34:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-20 14:49:48.570374
- Title: Summarising and Comparing Agent Dynamics with Contrastive Spatiotemporal
Abstraction
- Title(参考訳): 対照的な時空間的抽象とエージェントダイナミクスの要約と比較
- Authors: Tom Bewley, Jonathan Lawry, Arthur Richards
- Abstract要約: 本研究では,データ駆動型モデル非依存手法を導入し,進化する力学系内での高次コントラスト点の人間解釈可能な要約を生成する。
連続状態空間に対して実用的なアルゴリズムを概説し、深層強化学習エージェントの学習履歴を要約するために展開する。
- 参考スコア(独自算出の注目度): 12.858982225307809
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a data-driven, model-agnostic technique for generating a
human-interpretable summary of the salient points of contrast within an
evolving dynamical system, such as the learning process of a control agent. It
involves the aggregation of transition data along both spatial and temporal
dimensions according to an information-theoretic divergence measure. A
practical algorithm is outlined for continuous state spaces, and deployed to
summarise the learning histories of deep reinforcement learning agents with the
aid of graphical and textual communication methods. We expect our method to be
complementary to existing techniques in the realm of agent interpretability.
- Abstract(参考訳): 本稿では,制御エージェントの学習過程など,進化する力学系において,コントラストの突出点の人間解釈可能な要約を生成するためのデータ駆動型モデル非依存手法を提案する。
情報理論のばらつき尺度に従って、空間次元と時間次元の両方に沿って遷移データの集約を行う。
実用的なアルゴリズムは連続状態空間について概説し、グラフィカルおよびテキスト通信手法を用いて深層強化学習エージェントの学習履歴を要約するために展開される。
我々はエージェント解釈可能性の観点から既存の手法を補完する手法を期待する。
関連論文リスト
- Deep ContourFlow: Advancing Active Contours with Deep Learning [3.9948520633731026]
画像分割のための教師なしとワンショットの両方のアプローチのためのフレームワークを提案する。
広範なラベル付きトレーニングデータを必要とせずに、複雑なオブジェクト境界をキャプチャできる。
これは特に、注釈の不足に直面している分野である歴史学において必要である。
論文 参考訳(メタデータ) (2024-07-15T13:12:34Z) - Active Learning of Dynamics Using Prior Domain Knowledge in the Sampling Process [18.406992961818368]
本稿では,事前知識をサンプリングプロセスに明示的に組み込むことで,側面情報を活用する動的学習のための能動的学習アルゴリズムを提案する。
提案アルゴリズムは,観測データと側情報から導出される力学の非完全先行モデルとの間に高い経験的差を示す領域への探索を導く。
我々は,我々の能動学習アルゴリズムが,最大予測分散に対する明確な収束率を提供することで,基礎となる力学の一貫性のある推定値が得られることを厳密に証明する。
論文 参考訳(メタデータ) (2024-03-25T22:20:45Z) - Learning Collective Behaviors from Observation [13.278752237440022]
本稿では,力学系の構造的同定に使用される学習手法を総合的に検討する。
提案手法は,理論収束を保証するだけでなく,高次元観測データを扱う際の計算効率も保証する。
論文 参考訳(メタデータ) (2023-11-01T22:02:08Z) - SemanticBoost: Elevating Motion Generation with Augmented Textual Cues [73.83255805408126]
我々のフレームワークはセマンティック・エンハンスメント・モジュールとコンテキスト調整型モーション・デノイザ(CAMD)から構成されている。
CAMDアプローチは、高品質でセマンティックに一貫性のあるモーションシーケンスを生成するための全エンコンパスソリューションを提供する。
実験の結果,SemanticBoostは拡散法として自己回帰法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-10-31T09:58:11Z) - Spatio-Temporal Branching for Motion Prediction using Motion Increments [55.68088298632865]
HMP(Human Motion Prediction)はその多種多様な応用により、人気のある研究トピックとして浮上している。
従来の手法は手作りの機能と機械学習技術に依存している。
HMPのためのインクリメンタル情報を用いた時空間分岐ネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-02T12:04:28Z) - Continual Vision-Language Representation Learning with Off-Diagonal
Information [112.39419069447902]
CLIPのようなマルチモーダルなコントラスト学習フレームワークは通常、トレーニングに大量の画像テキストサンプルを必要とする。
本稿では,ストリーミングデータを用いた連続CLIPトレーニングの実現可能性について論じる。
論文 参考訳(メタデータ) (2023-05-11T08:04:46Z) - Consistency and Diversity induced Human Motion Segmentation [231.36289425663702]
本稿では,CDMS(Consistency and Diversity induced Human Motion)アルゴリズムを提案する。
我々のモデルは、ソースとターゲットデータを異なる多層特徴空間に分解する。
ソースとターゲットデータ間の領域ギャップを低減するために、マルチミューチュアル学習戦略を実行する。
論文 参考訳(メタデータ) (2022-02-10T06:23:56Z) - Measuring disentangled generative spatio-temporal representation [9.264758623908813]
我々は2つの最先端の非絡み合い表現学習手法を採用し、これらを3つの大規模公共時間データセットに適用する。
学習した表現の変数を記述するために,本手法が現実世界のセマンティクスの発見に有効であることが判明した。
論文 参考訳(メタデータ) (2022-02-10T03:57:06Z) - Self-Attention Neural Bag-of-Features [103.70855797025689]
我々は最近導入された2D-Attentionの上に構築し、注意学習方法論を再構築する。
本稿では,関連情報を強調した2次元目視マスクを学習する機能・時間的アテンション機構を提案する。
論文 参考訳(メタデータ) (2022-01-26T17:54:14Z) - Temporal Embeddings and Transformer Models for Narrative Text
Understanding [72.88083067388155]
キャラクタ関係モデリングのための物語テキスト理解のための2つのアプローチを提案する。
これらの関係の時間的進化は動的単語埋め込みによって説明され、時間とともに意味的変化を学ぶように設計されている。
最新の変換器モデルBERTに基づく教師付き学習手法を用いて文字間の静的な関係を検出する。
論文 参考訳(メタデータ) (2020-03-19T14:23:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。