論文の概要: Statistical Learning for Individualized Asset Allocation
- arxiv url: http://arxiv.org/abs/2201.07998v1
- Date: Thu, 20 Jan 2022 04:40:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-22 00:18:41.641849
- Title: Statistical Learning for Individualized Asset Allocation
- Title(参考訳): 個別資産配分のための統計的学習
- Authors: Yi Ding, Yingying Li and Rui Song
- Abstract要約: 我々は,連続行動の効果をモデル化するための離散化手法を開発した。
一般化された凹凸ペナルティを用いた推定器は望ましい理論的特性を享受できることを示す。
その結果, 個人化された最適戦略は, 個人財政の健全性を向上し, ベンチマーク戦略を超越していることが示唆された。
- 参考スコア(独自算出の注目度): 22.053470518472356
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We establish a high-dimensional statistical learning framework for
individualized asset allocation. Our proposed methodology addresses
continuous-action decision-making with a large number of characteristics. We
develop a discretization approach to model the effect from continuous actions
and allow the discretization level to be large and diverge with the number of
observations. The value function of continuous-action is estimated using
penalized regression with generalized penalties that are imposed on linear
transformations of the model coefficients. We show that our estimators using
generalized folded concave penalties enjoy desirable theoretical properties and
allow for statistical inference of the optimal value associated with optimal
decision-making. Empirically, the proposed framework is exercised with the
Health and Retirement Study data in finding individualized optimal asset
allocation. The results show that our individualized optimal strategy improves
individual financial well-being and surpasses benchmark strategies.
- Abstract(参考訳): 個別資産配分のための高次元統計学習フレームワークを構築した。
提案手法は,多種多様な特徴を持つ連続行動決定に対処する。
我々は,連続的な行動から効果をモデル化するための離散化手法を開発し,離散化レベルを大きくし,観測数にばらつきを与える。
連続作用の値関数は、モデル係数の線形変換に課される一般化されたペナルティを持つペナルティ回帰を用いて推定される。
一般化された凹凸ペナルティを用いた推定器は望ましい理論的特性を享受し、最適意思決定に伴う最適値の統計的推測を可能にする。
実証的に, 提案手法は, 個別の最適資産配分を求める際に, 健康・退職研究データを用いて実施される。
その結果、個人化された最適戦略は個々の財務の健全性を改善し、ベンチマーク戦略を上回った。
関連論文リスト
- Bayesian Nonparametrics Meets Data-Driven Distributionally Robust Optimization [29.24821214671497]
機械学習と統計モデルのトレーニングは、しばしばデータ駆動型リスク基準の最適化を伴う。
ベイズ的非パラメトリック(ディリクレ過程)理論と、スムーズなあいまいさ-逆選好の最近の決定論的モデルを組み合わせた、新しいロバストな基準を提案する。
実用的な実装として、よく知られたディリクレプロセスの表現に基づいて、評価基準の抽出可能な近似を提案し、研究する。
論文 参考訳(メタデータ) (2024-01-28T21:19:15Z) - On the Computational Complexity of Private High-dimensional Model Selection [18.964255744068122]
プライバシー制約下での高次元疎線形回帰モデルにおけるモデル選択の問題点を考察する。
本稿では, 効率的なメトロポリス・ハスティングスアルゴリズムを提案し, 一定の規則性条件下では, 定常分布への混合時間を享受できることを確かめる。
論文 参考訳(メタデータ) (2023-10-11T19:53:15Z) - Structured Dynamic Pricing: Optimal Regret in a Global Shrinkage Model [50.06663781566795]
消費者の嗜好と価格感が時間とともに変化する動的モデルを考える。
我々は,モデルパラメータの順序を事前に把握している透視者と比較して,収益損失が予想される,後悔による動的価格政策の性能を計測する。
提案した政策の最適性を示すだけでなく,政策立案のためには,利用可能な構造情報を組み込むことが不可欠であることを示す。
論文 参考訳(メタデータ) (2023-03-28T00:23:23Z) - Post Reinforcement Learning Inference [22.117487428829488]
強化学習アルゴリズムから収集したデータを用いた推定と推定について検討する。
本稿では,時間変化の分散を安定化させるために,適応重みを慎重に設計した重み付きZ推定手法を提案する。
主な応用は、動的処理効果推定と動的オフポリシー評価である。
論文 参考訳(メタデータ) (2023-02-17T12:53:15Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
本稿では, 専門家エージェントから, 一定の有限個の実演において観測された動作を過小評価する報酬と環境力学の構造を復元することを目的とする。
タスクを実行するための正確な専門知識モデルは、臨床的意思決定や自律運転のような安全に敏感な応用に応用できる。
論文 参考訳(メタデータ) (2023-02-15T04:14:20Z) - Variance-Aware Off-Policy Evaluation with Linear Function Approximation [85.75516599931632]
線形関数近似を用いた強化学習における非政治的評価問題について検討する。
本稿では,値関数の分散を推定し,フィルタQ-Iterationにおけるベルマン残差を再重み付けするアルゴリズムVA-OPEを提案する。
論文 参考訳(メタデータ) (2021-06-22T17:58:46Z) - An Extended Multi-Model Regression Approach for Compressive Strength
Prediction and Optimization of a Concrete Mixture [0.0]
コンクリートの圧縮強度のモデルに基づく評価は, 強度予測と混合最適化の両方のために高い値である。
複数の回帰手法の重み付け組み合わせにより予測モデルの精度を向上させるためのさらなる一歩を踏み出す。
得られた多回帰モデルに基づいてGAに基づく混合最適化を提案する。
論文 参考訳(メタデータ) (2021-06-13T16:10:32Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
同様の性能を実現するモデルセットに対して,予測公正性を特徴付けるフレームワークを開発する。
到達可能なグループレベルの予測格差の範囲を計算するためのトラクタブルアルゴリズムを提供します。
選択ラベル付きデータの実証的な課題に対処するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2021-01-02T02:11:37Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z) - Slice Sampling for General Completely Random Measures [74.24975039689893]
本稿では, 後続推定のためのマルコフ連鎖モンテカルロアルゴリズムについて, 補助スライス変数を用いてトランケーションレベルを適応的に設定する。
提案アルゴリズムの有効性は、いくつかの一般的な非パラメトリックモデルで評価される。
論文 参考訳(メタデータ) (2020-06-24T17:53:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。