Statistical Learning for Individualized Asset Allocation
- URL: http://arxiv.org/abs/2201.07998v1
- Date: Thu, 20 Jan 2022 04:40:03 GMT
- Title: Statistical Learning for Individualized Asset Allocation
- Authors: Yi Ding, Yingying Li and Rui Song
- Abstract summary: We develop a discretization approach to model the effect from continuous actions.
We show that our estimators using generalized folded concave penalties enjoy desirable theoretical properties.
The results show that our individualized optimal strategy improves individual financial well-being and surpasses benchmark strategies.
- Score: 22.053470518472356
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We establish a high-dimensional statistical learning framework for
individualized asset allocation. Our proposed methodology addresses
continuous-action decision-making with a large number of characteristics. We
develop a discretization approach to model the effect from continuous actions
and allow the discretization level to be large and diverge with the number of
observations. The value function of continuous-action is estimated using
penalized regression with generalized penalties that are imposed on linear
transformations of the model coefficients. We show that our estimators using
generalized folded concave penalties enjoy desirable theoretical properties and
allow for statistical inference of the optimal value associated with optimal
decision-making. Empirically, the proposed framework is exercised with the
Health and Retirement Study data in finding individualized optimal asset
allocation. The results show that our individualized optimal strategy improves
individual financial well-being and surpasses benchmark strategies.
Related papers
- Bayesian Nonparametrics Meets Data-Driven Distributionally Robust Optimization [29.24821214671497]
Training machine learning and statistical models often involve optimizing a data-driven risk criterion.
We propose a novel robust criterion by combining insights from Bayesian nonparametric (i.e., Dirichlet process) theory and a recent decision-theoretic model of smooth ambiguity-averse preferences.
For practical implementation, we propose and study tractable approximations of the criterion based on well-known Dirichlet process representations.
arXiv Detail & Related papers (2024-01-28T21:19:15Z) - On the Computational Complexity of Private High-dimensional Model Selection [18.964255744068122]
We consider the problem of model selection in a high-dimensional sparse linear regression model under privacy constraints.
We propose an efficient Metropolis-Hastings algorithm and under certain regularity conditions, we establish that it enjoys mixing time to its stationary distribution.
arXiv Detail & Related papers (2023-10-11T19:53:15Z) - Structured Dynamic Pricing: Optimal Regret in a Global Shrinkage Model [50.06663781566795]
We consider a dynamic model with the consumers' preferences as well as price sensitivity varying over time.
We measure the performance of a dynamic pricing policy via regret, which is the expected revenue loss compared to a clairvoyant that knows the sequence of model parameters in advance.
Our regret analysis results not only demonstrate optimality of the proposed policy but also show that for policy planning it is essential to incorporate available structural information.
arXiv Detail & Related papers (2023-03-28T00:23:23Z) - Post Reinforcement Learning Inference [22.117487428829488]
We consider estimation and inference using data collected from reinforcement learning algorithms.
We propose a weighted Z-estimation approach with carefully designed adaptive weights to stabilize the time-varying variance.
Primary applications include dynamic treatment effect estimation and dynamic off-policy evaluation.
arXiv Detail & Related papers (2023-02-17T12:53:15Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
This paper aims to recover the structure of rewards and environment dynamics that underlie observed actions in a fixed, finite set of demonstrations from an expert agent.
Accurate models of expertise in executing a task has applications in safety-sensitive applications such as clinical decision making and autonomous driving.
arXiv Detail & Related papers (2023-02-15T04:14:20Z) - Variance-Aware Off-Policy Evaluation with Linear Function Approximation [85.75516599931632]
We study the off-policy evaluation problem in reinforcement learning with linear function approximation.
We propose an algorithm, VA-OPE, which uses the estimated variance of the value function to reweight the Bellman residual in Fitted Q-Iteration.
arXiv Detail & Related papers (2021-06-22T17:58:46Z) - An Extended Multi-Model Regression Approach for Compressive Strength
Prediction and Optimization of a Concrete Mixture [0.0]
A model based evaluation of concrete compressive strength is of high value, both for the purpose of strength prediction and the mixture optimization.
We take a further step towards improving the accuracy of the prediction model via the weighted combination of multiple regression methods.
A proposed (GA)-based mixture optimization is proposed, building on the obtained multi-regression model.
arXiv Detail & Related papers (2021-06-13T16:10:32Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
We develop a framework for characterizing predictive fairness properties over the set of models that deliver similar overall performance.
We provide tractable algorithms to compute the range of attainable group-level predictive disparities.
We extend our framework to address the empirically relevant challenge of selectively labelled data.
arXiv Detail & Related papers (2021-01-02T02:11:37Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z) - Slice Sampling for General Completely Random Measures [74.24975039689893]
We present a novel Markov chain Monte Carlo algorithm for posterior inference that adaptively sets the truncation level using auxiliary slice variables.
The efficacy of the proposed algorithm is evaluated on several popular nonparametric models.
arXiv Detail & Related papers (2020-06-24T17:53:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.