論文の概要: Self-Awareness Safety of Deep Reinforcement Learning in Road Traffic
Junction Driving
- arxiv url: http://arxiv.org/abs/2201.08116v1
- Date: Thu, 20 Jan 2022 11:21:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-21 19:24:00.522564
- Title: Self-Awareness Safety of Deep Reinforcement Learning in Road Traffic
Junction Driving
- Title(参考訳): 道路交通ジャンクション運転における深層強化学習の自己認識安全性
- Authors: Zehong Cao, Jie Yun
- Abstract要約: 道路交通ジャンクションのシナリオでは、車両は通常、輸送環境から部分的な観察を受ける。
本研究では,3つのベースラインDRLモデル(DQN,A2C,PPO)の安全性評価を行った。
提案した自己認識注意-DQNは,交差点およびラウンドアバウンドシナリオにおける安全性を著しく向上させることができる。
- 参考スコア(独自算出の注目度): 20.85562165500152
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous driving has been at the forefront of public interest, and a
pivotal debate to widespread concerns is safety in the transportation system.
Deep reinforcement learning (DRL) has been applied to autonomous driving to
provide solutions for obstacle avoidance. However, in a road traffic junction
scenario, the vehicle typically receives partial observations from the
transportation environment, while DRL needs to rely on long-term rewards to
train a reliable model by maximising the cumulative rewards, which may take the
risk when exploring new actions and returning either a positive reward or a
penalty in the case of collisions. Although safety concerns are usually
considered in the design of a reward function, they are not fully considered as
the critical metric to directly evaluate the effectiveness of DRL algorithms in
autonomous driving. In this study, we evaluated the safety performance of three
baseline DRL models (DQN, A2C, and PPO) and proposed a self-awareness module
from an attention mechanism for DRL to improve the safety evaluation for an
anomalous vehicle in a complex road traffic junction environment, such as
intersection and roundabout scenarios, based on four metrics: collision rate,
success rate, freezing rate, and total reward. Our two experimental results in
the training and testing phases revealed the baseline DRL with poor safety
performance, while our proposed self-awareness attention-DQN can significantly
improve the safety performance in intersection and roundabout scenarios.
- Abstract(参考訳): 自動運転は公共の関心の最前線にあり、広範囲にわたる懸念に対する重要な議論は交通システムの安全性である。
深い強化学習(DRL)は、障害物回避のためのソリューションを提供する自動運転に適用されている。
しかし、道路交通ジャンクションのシナリオでは、車両は一般的に輸送環境から部分的な観察を受けるが、DRLは累積報酬を最大化することで信頼性のあるモデルを訓練するために長期的な報酬に頼る必要がある。
安全上の懸念は通常、報酬関数の設計において考慮されるが、自律運転におけるDRLアルゴリズムの有効性を直接評価する重要な指標とはみなされていない。
本研究では,3つの基準drlモデル(dqn,a2c,ppo)の安全性評価を行い,衝突率,成功率,凍結率,総報酬の4つの指標に基づいて,交差点やラウンドアラウンドアラウンドアラウンドシナリオのような複雑な道路交差点環境における異常車両の安全性評価を改善するため,drlの注意機構から自己認識モジュールを提案する。
トレーニングおよびテスト段階における2つの実験結果から,安全性能の低いベースラインDRLが得られたが,提案した自己認識注意-DQNは,交差点およびラウンドアバウンドシナリオにおける安全性を著しく向上させることができる。
関連論文リスト
- Autonomous Vehicle Decision-Making Framework for Considering Malicious
Behavior at Unsignalized Intersections [7.245712580297489]
自動運転車では、報酬信号は安全や効率などのフィードバック要因に関する通常の報酬として設定される。
本稿では,緊急時の安全性を高めるために,可変重み付けパラメータによって安全ゲインを変調する。
この決定フレームワークは、無人の交差点で潜在的に悪意のある振る舞いをする車両に遭遇する際に、自律走行車両が情報的決定を行うことを可能にする。
論文 参考訳(メタデータ) (2024-09-11T03:57:44Z) - SECRM-2D: RL-Based Efficient and Comfortable Route-Following Autonomous Driving with Analytic Safety Guarantees [5.156059061769101]
SECRM-2Dは、効率と快適性の最適化と固定経路に従うRL自律運転制御装置である。
シミュレーションテストシナリオにおいて,SECRM-2Dをいくつかの学習ベースラインおよび非学習ベースラインに対して評価する。
論文 参考訳(メタデータ) (2024-07-23T21:54:39Z) - RACER: Epistemic Risk-Sensitive RL Enables Fast Driving with Fewer Crashes [57.319845580050924]
本稿では,リスク感応制御と適応行動空間のカリキュラムを組み合わせた強化学習フレームワークを提案する。
提案アルゴリズムは,現実世界のオフロード運転タスクに対して,高速なポリシーを学習可能であることを示す。
論文 参考訳(メタデータ) (2024-05-07T23:32:36Z) - Uniformly Safe RL with Objective Suppression for Multi-Constraint Safety-Critical Applications [73.58451824894568]
広く採用されているCMDPモデルは予測のリスクを制約しており、長い尾の州で危険な行動を起こす余地がある。
安全クリティカルな領域では、そのような行動は破滅的な結果をもたらす可能性がある。
本稿では,目標を最大化するタスク報酬を適応的に抑制する新しい手法であるObjective Suppressionを提案する。
論文 参考訳(メタデータ) (2024-02-23T23:22:06Z) - Safety-aware Causal Representation for Trustworthy Offline Reinforcement
Learning in Autonomous Driving [33.672722472758636]
オフライン強化学習(RL)アプローチは、オフラインデータセットからのシーケンシャルな意思決定問題に対処する上で、顕著な効果を示す。
一般化可能なエンドツーエンド駆動ポリシの学習を容易にするために,saFety-aware strUctured Scenario representation (Fusion)を導入した。
様々な運転シナリオにおける実証的な証拠は、フュージョンが自律運転エージェントの安全性と一般化性を著しく向上させることを証明している。
論文 参考訳(メタデータ) (2023-10-31T18:21:24Z) - CAT: Closed-loop Adversarial Training for Safe End-to-End Driving [54.60865656161679]
Adversarial Training (CAT) は、自動運転車における安全なエンドツーエンド運転のためのフレームワークである。
Catは、安全クリティカルなシナリオでエージェントを訓練することで、運転エージェントの安全性を継続的に改善することを目的としている。
猫は、訓練中のエージェントに対抗する敵シナリオを効果的に生成できる。
論文 参考訳(メタデータ) (2023-10-19T02:49:31Z) - Towards Safe Autonomous Driving Policies using a Neuro-Symbolic Deep
Reinforcement Learning Approach [6.961253535504979]
本稿では, DRLSL (Dybolic Logics) と呼ばれる新しいニューロシンボリックモデルフリーDRLアプローチを提案する。
DRL(経験から学ぶ)とシンボリックな一階述語論理(知識駆動推論)の強みを組み合わせることで、実環境における自動運転のリアルタイムインタラクションにおける安全な学習を可能にする。
我々は,ハイDデータセットを用いた自律走行にDRLSLフレームワークを実装し,トレーニングとテストの両段階において,安全でない動作を回避できることを実証した。
論文 参考訳(メタデータ) (2023-07-03T19:43:21Z) - A Multiplicative Value Function for Safe and Efficient Reinforcement
Learning [131.96501469927733]
本稿では,安全評論家と報酬評論家からなる新しい乗法値関数を持つモデルフリーRLアルゴリズムを提案する。
安全評論家は、制約違反の確率を予測し、制限のないリターンのみを見積もる報酬批評家を割引する。
安全制約を付加した古典的RLベンチマークや、画像を用いたロボットナビゲーションタスク、生のライダースキャンを観察する4つの環境において、本手法の評価を行った。
論文 参考訳(メタデータ) (2023-03-07T18:29:15Z) - Safe Reinforcement Learning for an Energy-Efficient Driver Assistance
System [1.8899300124593645]
強化学習(Reinforcement Learning, RL)に基づく運転支援システムは, 電力系統制御動作の継続的な改善を通じて, 燃費の向上を図る。
本稿では,RLに基づく運転支援システムによって提案される安全でない動作をフィルタするために,指数制御障壁関数(ECBF)を導出して利用する。
提案手法は, 走行中の衝突を効果的に回避できることを示すため, 車両内での安全RLスキームの訓練と評価を行う。
論文 参考訳(メタデータ) (2023-01-03T00:25:00Z) - Benchmarking Safe Deep Reinforcement Learning in Aquatic Navigation [78.17108227614928]
本研究では,水文ナビゲーションに着目した安全強化学習のためのベンチマーク環境を提案する。
価値に基づく政策段階の深層強化学習(DRL)について考察する。
また,学習したモデルの振る舞いを所望の特性の集合上で検証する検証戦略を提案する。
論文 参考訳(メタデータ) (2021-12-16T16:53:56Z) - Cautious Adaptation For Reinforcement Learning in Safety-Critical
Settings [129.80279257258098]
都市運転のような現実の安全クリティカルな目標設定における強化学習(RL)は危険である。
非安全クリティカルな「ソース」環境でエージェントが最初に訓練する「安全クリティカル適応」タスクセットを提案する。
多様な環境における事前経験がリスクを見積もるためにエージェントに装備するという直感に基づくソリューションアプローチであるCARLを提案する。
論文 参考訳(メタデータ) (2020-08-15T01:40:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。