論文の概要: Meta Learning for Code Summarization
- arxiv url: http://arxiv.org/abs/2201.08310v1
- Date: Thu, 20 Jan 2022 17:23:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-21 14:57:07.256377
- Title: Meta Learning for Code Summarization
- Title(参考訳): コード要約のためのメタ学習
- Authors: Moiz Rauf, Sebastian Pad\'o, Michael Pradel
- Abstract要約: コード要約のための3つのSOTAモデルは、大きなコードベースのほぼ不整合部分集合でうまく機能することを示す。
与えられたコードセグメントに対して最適な候補サマリーを選択する3つのメタモデルを提案する。
- 参考スコア(独自算出の注目度): 10.403206672504664
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Source code summarization is the task of generating a high-level natural
language description for a segment of programming language code. Current neural
models for the task differ in their architecture and the aspects of code they
consider. In this paper, we show that three SOTA models for code summarization
work well on largely disjoint subsets of a large code-base. This
complementarity motivates model combination: We propose three meta-models that
select the best candidate summary for a given code segment. The two neural
models improve significantly over the performance of the best individual model,
obtaining an improvement of 2.1 BLEU points on a dataset of code segments where
at least one of the individual models obtains a non-zero BLEU.
- Abstract(参考訳): ソースコードの要約は、プログラミング言語のセグメントの高レベルな自然言語記述を生成するタスクである。
タスクの現在のニューラルモデルは、アーキテクチャと彼らが考慮するコードの側面が異なる。
本稿では、コード要約のための3つのsotaモデルが、大きなコードベースのほとんどが分離されたサブセット上でうまく機能することを示す。
この相補性はモデルの組み合わせを動機付けます: 与えられたコードセグメントに対して最適な候補の要約を選択する3つのメタモデルを提案します。
この2つのニューラルモデルは、最良個別モデルの性能よりも大幅に改善され、少なくとも1つの個別モデルが非ゼロbleuを取得するコードセグメントのデータセット上で2.1bleu点の改善が得られる。
関連論文リスト
- Code Representation Learning At Scale [75.04686476303436]
2段階の事前学習スキームを用いて,大量のコードデータを用いてコード表現学習を行う。
まず、マスキング言語モデリングにおけるランダム性と、プログラミング言語の構造的側面の両方を活用して、エンコーダを訓練する。
そして、教師なしの方法で強陰性かつ強正に構築された対照的な学習を通して表現を強化する。
論文 参考訳(メタデータ) (2024-02-02T22:19:15Z) - LLM-Assisted Code Cleaning For Training Accurate Code Generators [53.087019724256606]
コードの品質を調査した結果,より構造化され,読みやすくなれば,コード生成性能が向上することがわかった。
私たちは、これらの原則を使って既存のプログラムを変換する、新しいデータクリーニングパイプラインを構築します。
提案手法を2つのアルゴリズムコード生成ベンチマークで評価した結果,微調整のCodeLLaMa-7Bでは,元のデータセットの微調整に比べて最大30%性能が向上していることがわかった。
論文 参考訳(メタデータ) (2023-11-25T02:45:50Z) - A Comprehensive Review of State-of-The-Art Methods for Java Code
Generation from Natural Language Text [0.0]
本稿では,Javaコード生成タスクにおけるディープラーニングモデルの進化と進展を概観する。
我々は,最も重要な手法に焦点を合わせ,そのメリットと限界,およびコミュニティが使用する目的的機能を示す。
論文 参考訳(メタデータ) (2023-06-10T07:27:51Z) - CodeGen2: Lessons for Training LLMs on Programming and Natural Languages [116.74407069443895]
我々はエンコーダとデコーダベースのモデルを単一のプレフィックスLMに統一する。
学習方法は,「フリーランチ」仮説の主張を考察する。
データ配信においては,混合分布と多言語学習がモデル性能に及ぼす影響について検討した。
論文 参考訳(メタデータ) (2023-05-03T17:55:25Z) - CodeExp: Explanatory Code Document Generation [94.43677536210465]
既存のコード・トゥ・テキスト生成モデルは、コードの高レベルな要約のみを生成する。
我々は、コードのための高品質な説明記述の基準を特定するために、人間の研究を行う。
タスクのための多段階微調整戦略とベースラインモデルを提案する。
論文 参考訳(メタデータ) (2022-11-25T18:05:44Z) - Part-Based Models Improve Adversarial Robustness [57.699029966800644]
人間の事前知識とエンドツーエンドの学習を組み合わせることで、ディープニューラルネットワークの堅牢性を向上させることができることを示す。
我々のモデルは、部分分割モデルと小さな分類器を組み合わせて、オブジェクトを同時に部品に分割するようにエンドツーエンドに訓練されている。
実験の結果,これらのモデルによりテクスチャバイアスが低減され,一般的な汚職に対する堅牢性が向上し,相関が急上昇することが示唆された。
論文 参考訳(メタデータ) (2022-09-15T15:41:47Z) - Z-Code++: A Pre-trained Language Model Optimized for Abstractive
Summarization [108.09419317477986]
Z-Code++は、抽象的なテキスト要約に最適化された、新しいトレーニング済み言語モデルである。
このモデルは、まず、言語理解のためのテキストコーパスを用いて事前訓練され、続いて、接地テキスト生成のための要約コーパス上で継続的に事前訓練される。
パラメータ効率はXSumでは600倍のPaLM-540B,SAMSumでは200倍のGPT3-175Bである。
論文 参考訳(メタデータ) (2022-08-21T01:00:54Z) - Evaluating few shot and Contrastive learning Methods for Code Clone
Detection [5.1623866691702744]
コードクローン検出(Code Clone Detection)は、盗作検出、コード検索、コード理解に使用されるソフトウェアエンジニアリングタスクである。
ディープラーニングベースのモデルは、CodeXGLUEベンチマークで$sim$95%のF1スコア(分類器の評価に用いられる指標)を達成した。
注釈付きデータが限られているこれらのモデルの一般化性を評価する以前の研究はない。
論文 参考訳(メタデータ) (2022-04-15T15:01:55Z) - Assemble Foundation Models for Automatic Code Summarization [9.53949558569201]
ニューラルネットワークに基づく自動コード要約のためのフレキシブルでロバストなアプローチを提案する。
CodeBERT や GPT-2 のような利用可能な基盤モデルを AdaMo という単一のモデルに組み立てる。
本稿では,知識伝達の観点から,連続事前学習と中間微調整という2つの適応型スキームを導入する。
論文 参考訳(メタデータ) (2022-01-13T21:38:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。