Learning with latent group sparsity via heat flow dynamics on networks
- URL: http://arxiv.org/abs/2201.08326v1
- Date: Thu, 20 Jan 2022 17:45:57 GMT
- Title: Learning with latent group sparsity via heat flow dynamics on networks
- Authors: Subhroshekhar Ghosh and Soumendu Sundar Mukherjee
- Abstract summary: Group or cluster structure on explanatory variables in machine learning problems is a very general phenomenon.
We contribute an approach to learning under such group structure, that does not require prior information on the group identities.
We demonstrate a procedure to construct such a network based on the available data.
- Score: 5.076419064097734
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Group or cluster structure on explanatory variables in machine learning
problems is a very general phenomenon, which has attracted broad interest from
practitioners and theoreticians alike. In this work we contribute an approach
to learning under such group structure, that does not require prior information
on the group identities. Our paradigm is motivated by the Laplacian geometry of
an underlying network with a related community structure, and proceeds by
directly incorporating this into a penalty that is effectively computed via a
heat flow-based local network dynamics. In fact, we demonstrate a procedure to
construct such a network based on the available data. Notably, we dispense with
computationally intensive pre-processing involving clustering of variables,
spectral or otherwise. Our technique is underpinned by rigorous theorems that
guarantee its effective performance and provide bounds on its sample
complexity. In particular, in a wide range of settings, it provably suffices to
run the heat flow dynamics for time that is only logarithmic in the problem
dimensions. We explore in detail the interfaces of our approach with key
statistical physics models in network science, such as the Gaussian Free Field
and the Stochastic Block Model. We validate our approach by successful
applications to real-world data from a wide array of application domains,
including computer science, genetics, climatology and economics. Our work
raises the possibility of applying similar diffusion-based techniques to
classical learning tasks, exploiting the interplay between geometric, dynamical
and stochastic structures underlying the data.
Related papers
- Tipping Points of Evolving Epidemiological Networks: Machine
Learning-Assisted, Data-Driven Effective Modeling [0.0]
We study the tipping point collective dynamics of an adaptive susceptible-infected (SIS) epidemiological network in a data-driven, machine learning-assisted manner.
We identify a complex effective differential equation (eSDE) in terms physically meaningful coarse mean-field variables.
We study the statistics of rare events both through repeated brute force simulations and by using established mathematical/computational tools.
arXiv Detail & Related papers (2023-11-01T19:33:03Z) - Homological Convolutional Neural Networks [4.615338063719135]
We propose a novel deep learning architecture that exploits the data structural organization through topologically constrained network representations.
We test our model on 18 benchmark datasets against 5 classic machine learning and 3 deep learning models.
arXiv Detail & Related papers (2023-08-26T08:48:51Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
Federated edge learning is a promising technology to deploy intelligence at the edge of wireless networks in a privacy-preserving manner.
Under such a setting, multiple clients collaboratively train a global generic model under the coordination of an edge server.
This paper presents a distributed training paradigm that employs analog over-the-air computation to address the communication bottleneck.
arXiv Detail & Related papers (2023-02-24T08:41:19Z) - The Neural Race Reduction: Dynamics of Abstraction in Gated Networks [12.130628846129973]
We introduce the Gated Deep Linear Network framework that schematizes how pathways of information flow impact learning dynamics.
We derive an exact reduction and, for certain cases, exact solutions to the dynamics of learning.
Our work gives rise to general hypotheses relating neural architecture to learning and provides a mathematical approach towards understanding the design of more complex architectures.
arXiv Detail & Related papers (2022-07-21T12:01:03Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Clustered Federated Learning via Generalized Total Variation
Minimization [83.26141667853057]
We study optimization methods to train local (or personalized) models for local datasets with a decentralized network structure.
Our main conceptual contribution is to formulate federated learning as total variation minimization (GTV)
Our main algorithmic contribution is a fully decentralized federated learning algorithm.
arXiv Detail & Related papers (2021-05-26T18:07:19Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Deep Archimedean Copulas [98.96141706464425]
ACNet is a novel differentiable neural network architecture that enforces structural properties.
We show that ACNet is able to both approximate common Archimedean Copulas and generate new copulas which may provide better fits to data.
arXiv Detail & Related papers (2020-12-05T22:58:37Z) - A physics-informed operator regression framework for extracting
data-driven continuum models [0.0]
We present a framework for discovering continuum models from high fidelity molecular simulation data.
Our approach applies a neural network parameterization of governing physics in modal space.
We demonstrate the effectiveness of our framework for a variety of physics, including local and nonlocal diffusion processes and single and multiphase flows.
arXiv Detail & Related papers (2020-09-25T01:13:51Z) - Deep learning of contagion dynamics on complex networks [0.0]
We propose a complementary approach based on deep learning to build effective models of contagion dynamics on networks.
By allowing simulations on arbitrary network structures, our approach makes it possible to explore the properties of the learned dynamics beyond the training data.
Our results demonstrate how deep learning offers a new and complementary perspective to build effective models of contagion dynamics on networks.
arXiv Detail & Related papers (2020-06-09T17:18:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.