Hybrid Graph Models for Logic Optimization via Spatio-Temporal
Information
- URL: http://arxiv.org/abs/2201.08455v1
- Date: Thu, 20 Jan 2022 21:12:22 GMT
- Title: Hybrid Graph Models for Logic Optimization via Spatio-Temporal
Information
- Authors: Nan Wu, Jiwon Lee, Yuan Xie, Cong Hao
- Abstract summary: Two major concerns that may impede production-ready ML applications in EDA are accuracy requirements and generalization capability.
We propose hybrid graph neural network (GNN) based approaches towards highly accurate quality-of-result (QoR) estimations.
Evaluation on 3.3 million data points shows that the testing mean absolute percentage error (MAPE) on designs seen unseen during training are no more than 1.2% and 3.1%.
- Score: 15.850413267830522
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the stride made by machine learning (ML) based performance modeling,
two major concerns that may impede production-ready ML applications in EDA are
stringent accuracy requirements and generalization capability. To this end, we
propose hybrid graph neural network (GNN) based approaches towards highly
accurate quality-of-result (QoR) estimations with great generalization
capability, specifically targeting logic synthesis optimization. The key idea
is to simultaneously leverage spatio-temporal information from hardware designs
and logic synthesis flows to forecast performance (i.e., delay/area) of various
synthesis flows on different designs. The structural characteristics inside
hardware designs are distilled and represented by GNNs; the temporal knowledge
(i.e., relative ordering of logic transformations) in synthesis flows can be
imposed on hardware designs by combining a virtually added supernode or a
sequence processing model with conventional GNN models. Evaluation on 3.3
million data points shows that the testing mean absolute percentage error
(MAPE) on designs seen and unseen during training are no more than 1.2% and
3.1%, respectively, which are 7-15X lower than existing studies.
Related papers
- Logic Synthesis Optimization with Predictive Self-Supervision via Causal Transformers [19.13500546022262]
We introduce LSOformer, a novel approach harnessing Autoregressive transformer models and predictive SSL to predict the trajectory of Quality of Results (QoR)
LSOformer integrates cross-attention modules to merge insights from circuit graphs and optimization sequences, thereby enhancing prediction accuracy for QoR metrics.
arXiv Detail & Related papers (2024-09-16T18:45:07Z) - rule4ml: An Open-Source Tool for Resource Utilization and Latency Estimation for ML Models on FPGA [0.0]
This paper introduces a novel method to predict the resource utilization and inference latency of Neural Networks (NNs) before their synthesis and implementation on FPGA.
We leverage HLS4ML, a tool-flow that helps translate NNs into high-level synthesis (HLS) code.
Our method uses trained regression models for immediate pre-synthesis predictions.
arXiv Detail & Related papers (2024-08-09T19:35:10Z) - Mechanistic Design and Scaling of Hybrid Architectures [114.3129802943915]
We identify and test new hybrid architectures constructed from a variety of computational primitives.
We experimentally validate the resulting architectures via an extensive compute-optimal and a new state-optimal scaling law analysis.
We find MAD synthetics to correlate with compute-optimal perplexity, enabling accurate evaluation of new architectures.
arXiv Detail & Related papers (2024-03-26T16:33:12Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - INVICTUS: Optimizing Boolean Logic Circuit Synthesis via Synergistic
Learning and Search [18.558280701880136]
State-of-the-art logic synthesis algorithms have a large number of logic minimizations.
INVICTUS generates a sequence of logic minimizations based on a training dataset of previously seen designs.
arXiv Detail & Related papers (2023-05-22T15:50:42Z) - FAENet: Frame Averaging Equivariant GNN for Materials Modeling [123.19473575281357]
We introduce a flexible framework relying on frameaveraging (SFA) to make any model E(3)-equivariant or invariant through data transformations.
We prove the validity of our method theoretically and empirically demonstrate its superior accuracy and computational scalability in materials modeling.
arXiv Detail & Related papers (2023-04-28T21:48:31Z) - Bayesian Neural Network Language Modeling for Speech Recognition [59.681758762712754]
State-of-the-art neural network language models (NNLMs) represented by long short term memory recurrent neural networks (LSTM-RNNs) and Transformers are becoming highly complex.
In this paper, an overarching full Bayesian learning framework is proposed to account for the underlying uncertainty in LSTM-RNN and Transformer LMs.
arXiv Detail & Related papers (2022-08-28T17:50:19Z) - Back to MLP: A Simple Baseline for Human Motion Prediction [59.18776744541904]
This paper tackles the problem of human motion prediction, consisting in forecasting future body poses from historically observed sequences.
We show that the performance of these approaches can be surpassed by a light-weight and purely architectural architecture with only 0.14M parameters.
An exhaustive evaluation on Human3.6M, AMASS and 3DPW datasets shows that our method, which we dub siMLPe, consistently outperforms all other approaches.
arXiv Detail & Related papers (2022-07-04T16:35:58Z) - High-Level Synthesis Performance Prediction using GNNs: Benchmarking,
Modeling, and Advancing [21.8349113634555]
Agile hardware development requires fast and accurate circuit quality evaluation from early design stages.
We propose a rapid and accurate performance modeling, exploiting the representation power of graph neural networks (GNNs) by representing C/C++ programs as graphs.
Our proposed predictor largely outperforms HLS by up to 40X and excels existing predictors by 2X to 5X in terms of resource usage and timing prediction.
arXiv Detail & Related papers (2022-01-18T09:53:48Z) - A Graph Deep Learning Framework for High-Level Synthesis Design Space
Exploration [11.154086943903696]
High-Level Synthesis is a solution for fast prototyping application-specific hardware.
We propose HLS, for the first time in the literature, graph neural networks that jointly predict acceleration performance and hardware costs.
We show that our approach achieves prediction accuracy comparable with that of commonly used simulators.
arXiv Detail & Related papers (2021-11-29T18:17:45Z) - FBNetV3: Joint Architecture-Recipe Search using Predictor Pretraining [65.39532971991778]
We present an accuracy predictor that scores architecture and training recipes jointly, guiding both sample selection and ranking.
We run fast evolutionary searches in just CPU minutes to generate architecture-recipe pairs for a variety of resource constraints.
FBNetV3 makes up a family of state-of-the-art compact neural networks that outperform both automatically and manually-designed competitors.
arXiv Detail & Related papers (2020-06-03T05:20:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.