Logic Synthesis Optimization with Predictive Self-Supervision via Causal Transformers
- URL: http://arxiv.org/abs/2409.10653v1
- Date: Mon, 16 Sep 2024 18:45:07 GMT
- Title: Logic Synthesis Optimization with Predictive Self-Supervision via Causal Transformers
- Authors: Raika Karimi, Faezeh Faez, Yingxue Zhang, Xing Li, Lei Chen, Mingxuan Yuan, Mahdi Biparva,
- Abstract summary: We introduce LSOformer, a novel approach harnessing Autoregressive transformer models and predictive SSL to predict the trajectory of Quality of Results (QoR)
LSOformer integrates cross-attention modules to merge insights from circuit graphs and optimization sequences, thereby enhancing prediction accuracy for QoR metrics.
- Score: 19.13500546022262
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contemporary hardware design benefits from the abstraction provided by high-level logic gates, streamlining the implementation of logic circuits. Logic Synthesis Optimization (LSO) operates at one level of abstraction within the Electronic Design Automation (EDA) workflow, targeting improvements in logic circuits with respect to performance metrics such as size and speed in the final layout. Recent trends in the field show a growing interest in leveraging Machine Learning (ML) for EDA, notably through ML-guided logic synthesis utilizing policy-based Reinforcement Learning (RL) methods.Despite these advancements, existing models face challenges such as overfitting and limited generalization, attributed to constrained public circuits and the expressiveness limitations of graph encoders. To address these hurdles, and tackle data scarcity issues, we introduce LSOformer, a novel approach harnessing Autoregressive transformer models and predictive SSL to predict the trajectory of Quality of Results (QoR). LSOformer integrates cross-attention modules to merge insights from circuit graphs and optimization sequences, thereby enhancing prediction accuracy for QoR metrics. Experimental studies validate the effectiveness of LSOformer, showcasing its superior performance over baseline architectures in QoR prediction tasks, where it achieves improvements of 5.74%, 4.35%, and 17.06% on the EPFL, OABCD, and proprietary circuits datasets, respectively, in inductive setup.
Related papers
- Architect of the Bits World: Masked Autoregressive Modeling for Circuit Generation Guided by Truth Table [5.300504429005315]
We propose a novel approach integrating conditional generative models with differentiable architecture search (DAS) for circuit generation.
Our approach first introduces CircuitVQ, a circuit tokenizer trained based on our Circuit AutoEncoder.
We then develop CircuitAR, a masked autoregressive model leveraging CircuitVQ as the tokenizer.
arXiv Detail & Related papers (2025-02-18T11:13:03Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.
We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.
Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - The Graph's Apprentice: Teaching an LLM Low Level Knowledge for Circuit Quality Estimation [34.37154877681809]
This work proposes augmenting large language models (LLMs) with predictor networks trained to estimate circuit quality directly from HDL code.
To enhance performance, the model is regularized using embeddings from graph neural networks (GNNs) trained on Look-Up Table (LUT) graphs.
The proposed method demonstrates superior performance compared to existing graph-based RTL-level estimation techniques on the established benchmark OpenABCD.
arXiv Detail & Related papers (2024-10-30T04:20:10Z) - AdaLog: Post-Training Quantization for Vision Transformers with Adaptive Logarithm Quantizer [54.713778961605115]
Vision Transformer (ViT) has become one of the most prevailing fundamental backbone networks in the computer vision community.
We propose a novel non-uniform quantizer, dubbed the Adaptive Logarithm AdaLog (AdaLog) quantizer.
arXiv Detail & Related papers (2024-07-17T18:38:48Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Hybrid Graph Models for Logic Optimization via Spatio-Temporal
Information [15.850413267830522]
Two major concerns that may impede production-ready ML applications in EDA are accuracy requirements and generalization capability.
We propose hybrid graph neural network (GNN) based approaches towards highly accurate quality-of-result (QoR) estimations.
Evaluation on 3.3 million data points shows that the testing mean absolute percentage error (MAPE) on designs seen unseen during training are no more than 1.2% and 3.1%.
arXiv Detail & Related papers (2022-01-20T21:12:22Z) - A Graph Deep Learning Framework for High-Level Synthesis Design Space
Exploration [11.154086943903696]
High-Level Synthesis is a solution for fast prototyping application-specific hardware.
We propose HLS, for the first time in the literature, graph neural networks that jointly predict acceleration performance and hardware costs.
We show that our approach achieves prediction accuracy comparable with that of commonly used simulators.
arXiv Detail & Related papers (2021-11-29T18:17:45Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.