alpha-Deep Probabilistic Inference (alpha-DPI): efficient uncertainty
quantification from exoplanet astrometry to black hole feature extraction
- URL: http://arxiv.org/abs/2201.08506v1
- Date: Fri, 21 Jan 2022 00:58:10 GMT
- Title: alpha-Deep Probabilistic Inference (alpha-DPI): efficient uncertainty
quantification from exoplanet astrometry to black hole feature extraction
- Authors: He Sun, Katherine L. Bouman, Paul Tiede, Jason J. Wang, Sarah Blunt,
Dimitri Mawet
- Abstract summary: Inference is crucial in modern astronomical research, where hidden astrophysical features are estimated from indirect and noisy measurements.
Traditional approaches for posterior estimation include sampling-based methods and variational inference.
We propose alpha-DPI, a deep learning framework that learns an approximate posterior using alpha-divergence variational inference paired with a generative neural network.
- Score: 7.5042943749402555
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inference is crucial in modern astronomical research, where hidden
astrophysical features and patterns are often estimated from indirect and noisy
measurements. Inferring the posterior of hidden features, conditioned on the
observed measurements, is essential for understanding the uncertainty of
results and downstream scientific interpretations. Traditional approaches for
posterior estimation include sampling-based methods and variational inference.
However, sampling-based methods are typically slow for high-dimensional inverse
problems, while variational inference often lacks estimation accuracy. In this
paper, we propose alpha-DPI, a deep learning framework that first learns an
approximate posterior using alpha-divergence variational inference paired with
a generative neural network, and then produces more accurate posterior samples
through importance re-weighting of the network samples. It inherits strengths
from both sampling and variational inference methods: it is fast, accurate, and
scalable to high-dimensional problems. We apply our approach to two high-impact
astronomical inference problems using real data: exoplanet astrometry and black
hole feature extraction.
Related papers
- Inferring Atmospheric Properties of Exoplanets with Flow Matching and
Neural Importance Sampling [10.847353970405285]
Atmospheric retrievals characterize exoplanets by estimating atmospheric parameters from observed light spectra.
Traditional approaches such as nested sampling are computationally expensive, sparking an interest in solutions based on machine learning (ML)
We first explore flow matching posterior estimation (FMPE) as a new ML-based method for AR and find that, in our case, it is more accurate than neural posterior estimation (NPE)
We then combine both FMPE and NPE with importance sampling, in which case both methods outperform nested sampling in terms of accuracy and simulation efficiency.
arXiv Detail & Related papers (2023-12-13T17:12:03Z) - ExoplANNET: A deep learning algorithm to detect and identify planetary
signals in radial velocity data [0.0]
A neural network is proposed to replace the computation of the significance of the signal detected with the radial velocity method.
The algorithm is trained using synthetic data of systems with and without planetary companions.
It achieves 28 % fewer false positives and execution time is five orders of magnitude faster than the traditional method.
arXiv Detail & Related papers (2023-03-16T14:16:19Z) - Posterior sampling with CNN-based, Plug-and-Play regularization with
applications to Post-Stack Seismic Inversion [0.0]
Uncertainty quantification is crucial to inverse problems, as it could provide valuable information about the inversion results.
We present a framework that performs posterior inference by implicitly regularizing the Kullback-Leibler divergence loss with a CNN-based denoiser.
We call this algorithm new Plug-and-Play Stein Vari-SVGD and demonstrate its ability in producing high-resolution, trustworthy samples.
arXiv Detail & Related papers (2022-12-30T08:20:49Z) - Posterior samples of source galaxies in strong gravitational lenses with
score-based priors [107.52670032376555]
We use a score-based model to encode the prior for the inference of undistorted images of background galaxies.
We show how the balance between the likelihood and the prior meet our expectations in an experiment with out-of-distribution data.
arXiv Detail & Related papers (2022-11-07T19:00:42Z) - Neural Importance Sampling for Rapid and Reliable Gravitational-Wave
Inference [59.040209568168436]
We first generate a rapid proposal for the Bayesian posterior using neural networks, and then attach importance weights based on the underlying likelihood and prior.
This provides (1) a corrected posterior free from network inaccuracies, (2) a performance diagnostic (the sample efficiency) for assessing the proposal and identifying failure cases, and (3) an unbiased estimate of the Bayesian evidence.
We carry out a large study analyzing 42 binary black hole mergers observed by LIGO and Virgo with the SEOBNRv4PHM and IMRPhenomHMXP waveform models.
arXiv Detail & Related papers (2022-10-11T18:00:02Z) - Inferring Structural Parameters of Low-Surface-Brightness-Galaxies with
Uncertainty Quantification using Bayesian Neural Networks [70.80563014913676]
We show that a Bayesian Neural Network (BNN) can be used for the inference, with uncertainty, of such parameters from simulated low-surface-brightness galaxy images.
Compared to traditional profile-fitting methods, we show that the uncertainties obtained using BNNs are comparable in magnitude, well-calibrated, and the point estimates of the parameters are closer to the true values.
arXiv Detail & Related papers (2022-07-07T17:55:26Z) - Provable RL with Exogenous Distractors via Multistep Inverse Dynamics [85.52408288789164]
Real-world applications of reinforcement learning (RL) require the agent to deal with high-dimensional observations such as those generated from a megapixel camera.
Prior work has addressed such problems with representation learning, through which the agent can provably extract endogenous, latent state information from raw observations.
However, such approaches can fail in the presence of temporally correlated noise in the observations.
arXiv Detail & Related papers (2021-10-17T15:21:27Z) - Residual Overfit Method of Exploration [78.07532520582313]
We propose an approximate exploration methodology based on fitting only two point estimates, one tuned and one overfit.
The approach drives exploration towards actions where the overfit model exhibits the most overfitting compared to the tuned model.
We compare ROME against a set of established contextual bandit methods on three datasets and find it to be one of the best performing.
arXiv Detail & Related papers (2021-10-06T17:05:33Z) - Inferring dark matter substructure with astrometric lensing beyond the
power spectrum [0.0]
We introduce a novel method to search for global dark matter-induced gravitational lensing signatures in astrometric datasets.
Our method based on neural likelihood-ratio estimation shows significantly enhanced sensitivity to a cold dark matter population.
arXiv Detail & Related papers (2021-10-04T18:00:00Z) - Real-time gravitational-wave science with neural posterior estimation [64.67121167063696]
We demonstrate unprecedented accuracy for rapid gravitational-wave parameter estimation with deep learning.
We analyze eight gravitational-wave events from the first LIGO-Virgo Gravitational-Wave Transient Catalog.
We find very close quantitative agreement with standard inference codes, but with inference times reduced from O(day) to a minute per event.
arXiv Detail & Related papers (2021-06-23T18:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.