Inferring Structural Parameters of Low-Surface-Brightness-Galaxies with
Uncertainty Quantification using Bayesian Neural Networks
- URL: http://arxiv.org/abs/2207.03471v1
- Date: Thu, 7 Jul 2022 17:55:26 GMT
- Title: Inferring Structural Parameters of Low-Surface-Brightness-Galaxies with
Uncertainty Quantification using Bayesian Neural Networks
- Authors: Dimitrios Tanoglidis, Aleksandra \'Ciprijanovi\'c, Alex Drlica-Wagner
- Abstract summary: We show that a Bayesian Neural Network (BNN) can be used for the inference, with uncertainty, of such parameters from simulated low-surface-brightness galaxy images.
Compared to traditional profile-fitting methods, we show that the uncertainties obtained using BNNs are comparable in magnitude, well-calibrated, and the point estimates of the parameters are closer to the true values.
- Score: 70.80563014913676
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Measuring the structural parameters (size, total brightness, light
concentration, etc.) of galaxies is a significant first step towards a
quantitative description of different galaxy populations. In this work, we
demonstrate that a Bayesian Neural Network (BNN) can be used for the inference,
with uncertainty quantification, of such morphological parameters from
simulated low-surface-brightness galaxy images. Compared to traditional
profile-fitting methods, we show that the uncertainties obtained using BNNs are
comparable in magnitude, well-calibrated, and the point estimates of the
parameters are closer to the true values. Our method is also significantly
faster, which is very important with the advent of the era of large galaxy
surveys and big data in astrophysics.
Related papers
- Field-level simulation-based inference with galaxy catalogs: the impact of systematic effects [0.6271213328710472]
We train and test our models on galaxy catalogs, created from thousands of state-of-the-art hydrodynamic simulations run with different codes from the CAMELS project.
Although the presence of these effects degrades the precision and accuracy of the models, the fraction of galaxy catalogs where the model performs well is over 90 %.
arXiv Detail & Related papers (2023-10-23T18:00:07Z) - Learning Active Subspaces for Effective and Scalable Uncertainty
Quantification in Deep Neural Networks [13.388835540131508]
We propose a novel scheme for constructing a low-dimensional subspace of the neural network parameters.
We demonstrate that the significantly reduced active subspace enables effective and scalable Bayesian inference.
Our approach provides reliable predictions with robust uncertainty estimates for various regression tasks.
arXiv Detail & Related papers (2023-09-06T15:00:36Z) - Cosmology from Galaxy Redshift Surveys with PointNet [65.89809800010927]
In cosmology, galaxy redshift surveys resemble such a permutation invariant collection of positions in space.
We employ a textitPointNet-like neural network to regress the values of the cosmological parameters directly from point cloud data.
Our implementation of PointNets can analyse inputs of $mathcalO(104) - mathcalO(105)$ galaxies at a time, which improves upon earlier work for this application by roughly two orders of magnitude.
arXiv Detail & Related papers (2022-11-22T15:35:05Z) - Supernova Light Curves Approximation based on Neural Network Models [53.180678723280145]
Photometric data-driven classification of supernovae becomes a challenge due to the appearance of real-time processing of big data in astronomy.
Recent studies have demonstrated the superior quality of solutions based on various machine learning models.
We study the application of multilayer perceptron (MLP), bayesian neural network (BNN), and normalizing flows (NF) to approximate observations for a single light curve.
arXiv Detail & Related papers (2022-06-27T13:46:51Z) - Inferring dark matter substructure with astrometric lensing beyond the
power spectrum [0.0]
We introduce a novel method to search for global dark matter-induced gravitational lensing signatures in astrometric datasets.
Our method based on neural likelihood-ratio estimation shows significantly enhanced sensitivity to a cold dark matter population.
arXiv Detail & Related papers (2021-10-04T18:00:00Z) - Constraining dark matter annihilation with cosmic ray antiprotons using
neural networks [0.0]
We present a new method that significantly accelerates simulations of secondary and dark matter Galactic cosmic ray antiprotons.
We identify importance sampling as particularly suitable for ensuring that the network is only evaluated in well-trained parameter regions.
The fully trained networks are released as DarkRayNet together with this work and achieve a speed-up of the runtime by at least two orders of magnitude compared to conventional approaches.
arXiv Detail & Related papers (2021-07-26T18:00:04Z) - Real-time gravitational-wave science with neural posterior estimation [64.67121167063696]
We demonstrate unprecedented accuracy for rapid gravitational-wave parameter estimation with deep learning.
We analyze eight gravitational-wave events from the first LIGO-Virgo Gravitational-Wave Transient Catalog.
We find very close quantitative agreement with standard inference codes, but with inference times reduced from O(day) to a minute per event.
arXiv Detail & Related papers (2021-06-23T18:00:05Z) - DeepShadows: Separating Low Surface Brightness Galaxies from Artifacts
using Deep Learning [70.80563014913676]
We investigate the use of convolutional neural networks (CNNs) for the problem of separating low-surface-brightness galaxies from artifacts in survey images.
We show that CNNs offer a very promising path in the quest to study the low-surface-brightness universe.
arXiv Detail & Related papers (2020-11-24T22:51:08Z) - Bayesian Neural Networks for Fast SUSY Predictions [58.720142291102135]
In this paper, machine learning is used to model the mapping from the parameter space of a BSM theory to some of its predictions.
All three quantities are modeled with average percent errors of 3.34% or less and in a time significantly shorter than is possible with the supersymmetry codes from which the results are derived.
Results are a further demonstration of the potential for machine learning to model accurately the mapping from the high dimensional spaces of BSM theories to their predictions.
arXiv Detail & Related papers (2020-07-09T01:45:06Z) - Constraining the recent star formation history of galaxies : an
Approximate Bayesian Computation approach [0.0]
We present a method to identify galaxies undergoing a strong variation of star formation activity in the last tens to hundreds Myr.
We analyze a sample of COSMOS galaxies using high signal-to-noise ratio broad band photometry.
arXiv Detail & Related papers (2020-02-18T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.