Human Activity Recognition models using Limited Consumer Device Sensors
and Machine Learning
- URL: http://arxiv.org/abs/2201.08565v1
- Date: Fri, 21 Jan 2022 06:54:05 GMT
- Title: Human Activity Recognition models using Limited Consumer Device Sensors
and Machine Learning
- Authors: Rushit Dave, Naeem Seliya, Mounika Vanamala, Wei Tee
- Abstract summary: Human activity recognition has grown in popularity with its increase of applications within daily lifestyles and medical environments.
This paper presents the findings of different models that are limited to train using sensor data from smartphones and smartwatches.
Results show promise for models trained strictly using limited sensor data collected from only smartphones and smartwatches coupled with traditional machine learning concepts and algorithms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human activity recognition has grown in popularity with its increase of
applications within daily lifestyles and medical environments. The goal of
having efficient and reliable human activity recognition brings benefits such
as accessible use and better allocation of resources; especially in the medical
industry. Activity recognition and classification can be obtained using many
sophisticated data recording setups, but there is also a need in observing how
performance varies among models that are strictly limited to using sensor data
from easily accessible devices: smartphones and smartwatches. This paper
presents the findings of different models that are limited to train using such
sensors. The models are trained using either the k-Nearest Neighbor, Support
Vector Machine, or Random Forest classifier algorithms. Performance and
evaluations are done by comparing various model performances using different
combinations of mobile sensors and how they affect recognitive performances of
models. Results show promise for models trained strictly using limited sensor
data collected from only smartphones and smartwatches coupled with traditional
machine learning concepts and algorithms.
Related papers
- Scaling Wearable Foundation Models [54.93979158708164]
We investigate the scaling properties of sensor foundation models across compute, data, and model size.
Using a dataset of up to 40 million hours of in-situ heart rate, heart rate variability, electrodermal activity, accelerometer, skin temperature, and altimeter per-minute data from over 165,000 people, we create LSM.
Our results establish the scaling laws of LSM for tasks such as imputation, extrapolation, both across time and sensor modalities.
arXiv Detail & Related papers (2024-10-17T15:08:21Z) - Efficient Adaptive Human-Object Interaction Detection with
Concept-guided Memory [64.11870454160614]
We propose an efficient Adaptive HOI Detector with Concept-guided Memory (ADA-CM)
ADA-CM has two operating modes. The first mode makes it tunable without learning new parameters in a training-free paradigm.
Our proposed method achieves competitive results with state-of-the-art on the HICO-DET and V-COCO datasets with much less training time.
arXiv Detail & Related papers (2023-09-07T13:10:06Z) - Robust Activity Recognition for Adaptive Worker-Robot Interaction using
Transfer Learning [0.0]
This paper proposes a transfer learning methodology for activity recognition of construction workers.
The developed algorithm transfers features from a model pre-trained by the original authors and fine-tunes them for the downstream task of activity recognition.
Results indicate that the fine-tuned model can recognize distinct MMH tasks in a robust and adaptive manner.
arXiv Detail & Related papers (2023-08-28T19:03:46Z) - Human Activity Recognition Using Self-Supervised Representations of
Wearable Data [0.0]
Development of accurate algorithms for human activity recognition (HAR) is hindered by the lack of large real-world labeled datasets.
Here we develop a 6-class HAR model with strong performance when evaluated on real-world datasets not seen during training.
arXiv Detail & Related papers (2023-04-26T07:33:54Z) - Muscle Vision: Real Time Keypoint Based Pose Classification of Physical
Exercises [52.77024349608834]
3D human pose recognition extrapolated from video has advanced to the point of enabling real-time software applications.
We propose a new machine learning pipeline and web interface that performs human pose recognition on a live video feed to detect when common exercises are performed and classify them accordingly.
arXiv Detail & Related papers (2022-03-23T00:55:07Z) - STAR: Sparse Transformer-based Action Recognition [61.490243467748314]
This work proposes a novel skeleton-based human action recognition model with sparse attention on the spatial dimension and segmented linear attention on the temporal dimension of data.
Experiments show that our model can achieve comparable performance while utilizing much less trainable parameters and achieve high speed in training and inference.
arXiv Detail & Related papers (2021-07-15T02:53:11Z) - Human Activity Analysis and Recognition from Smartphones using Machine
Learning Techniques [0.0]
Human Activity Recognition (HAR) is considered a valuable research topic in the last few decades.
In our paper, we analyze data using machine learning models to recognize human activities.
arXiv Detail & Related papers (2021-03-30T16:46:40Z) - SensiX: A Platform for Collaborative Machine Learning on the Edge [69.1412199244903]
We present SensiX, a personal edge platform that stays between sensor data and sensing models.
We demonstrate its efficacy in developing motion and audio-based multi-device sensing systems.
Our evaluation shows that SensiX offers a 7-13% increase in overall accuracy and up to 30% increase across different environment dynamics at the expense of 3mW power overhead.
arXiv Detail & Related papers (2020-12-04T23:06:56Z) - Federated Learning with Heterogeneous Labels and Models for Mobile
Activity Monitoring [0.7106986689736827]
On-device Federated Learning proves to be an effective approach for distributed and collaborative machine learning.
We propose a framework for federated label-based aggregation, which leverages overlapping information gain across activities.
Empirical evaluation with the Heterogeneity Human Activity Recognition (HHAR) dataset on Raspberry Pi 2 indicates an average deterministic accuracy increase of at least 11.01%.
arXiv Detail & Related papers (2020-12-04T11:44:17Z) - Sensor Data for Human Activity Recognition: Feature Representation and
Benchmarking [27.061240686613182]
The field of Human Activity Recognition (HAR) focuses on obtaining and analysing data captured from monitoring devices (e.g. sensors)
We address the issue of accurately recognising human activities using different Machine Learning (ML) techniques.
arXiv Detail & Related papers (2020-05-15T00:46:55Z) - A Data and Compute Efficient Design for Limited-Resources Deep Learning [68.55415606184]
equivariant neural networks have gained increased interest in the deep learning community.
They have been successfully applied in the medical domain where symmetries in the data can be effectively exploited to build more accurate and robust models.
Mobile, on-device implementations of deep learning solutions have been developed for medical applications.
However, equivariant models are commonly implemented using large and computationally expensive architectures, not suitable to run on mobile devices.
In this work, we design and test an equivariant version of MobileNetV2 and further optimize it with model quantization to enable more efficient inference.
arXiv Detail & Related papers (2020-04-21T00:49:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.