論文の概要: Learning deterministic hydrodynamic equations from stochastic active
particle dynamics
- arxiv url: http://arxiv.org/abs/2201.08623v1
- Date: Fri, 21 Jan 2022 10:19:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-24 18:15:48.099824
- Title: Learning deterministic hydrodynamic equations from stochastic active
particle dynamics
- Title(参考訳): 確率活性粒子動力学による決定論的流体力学方程式の学習
- Authors: Suryanarayana Maddu, Quentin Vagne, Ivo F. Sbalzarini
- Abstract要約: 本研究では, 自己推進粒子系で観測された密度レーンの流体力学モデル学習に本手法を適用した。
このことは、統計的学習理論と物理先行理論が組み合わさって、非平衡過程のマルチスケールモデルの発見を可能にすることを証明している。
- 参考スコア(独自算出の注目度): 1.933681537640272
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a principled data-driven strategy for learning deterministic
hydrodynamic models directly from stochastic non-equilibrium active particle
trajectories. We apply our method to learning a hydrodynamic model for the
propagating density lanes observed in self-propelled particle systems and to
learning a continuum description of cell dynamics in epithelial tissues. We
also infer from stochastic particle trajectories the latent phoretic fields
driving chemotaxis. This demonstrates that statistical learning theory combined
with physical priors can enable discovery of multi-scale models of
non-equilibrium stochastic processes characteristic of collective movement in
living systems.
- Abstract(参考訳): 確率的非平衡能動粒子軌道から直接決定論的流体力学モデルを学ぶための原理的データ駆動戦略を提案する。
本手法は, 自己推進粒子系で観察される伝播密度レーンの流体力学モデルと, 上皮組織における細胞動態の連続的記述の学習に応用する。
また,ケモタキシーを駆動する潜在音場を確率的粒子軌道から推定した。
これは、統計学習理論と物理先行理論が組み合わさって、生活システムにおける集団運動に特徴的な非平衡確率過程のマルチスケールモデルの発見を可能にすることを証明している。
関連論文リスト
- Exploring Model Transferability through the Lens of Potential Energy [78.60851825944212]
トランスファーラーニングは、事前訓練されたディープラーニングモデルが広く利用可能であることから、コンピュータビジョンタスクにおいて重要になっている。
既存のトレーニング済みモデルの転送可能性の測定方法は、符号化された静的特徴とタスクラベルの間の統計的相関に依存する。
我々はこれらの課題に対処するために,PEDという物理に着想を得たアプローチを提案する。
論文 参考訳(メタデータ) (2023-08-29T07:15:57Z) - Learning locally dominant force balances in active particle systems [1.933681537640272]
我々は、自己組織化された活性粒子系におけるマクロパターン形成を説明する局所的な支配的な力について学習する。
本研究では, 加速器や移動密度帯などの多種多様なパターンを生じる自己推進粒子の古典的流体力学モデルについて検討する。
また, 粒子の速度が局所密度の影響を受けるシステムにおいて, パターン形成の類似の物理原理を明らかにする。
論文 参考訳(メタデータ) (2023-07-27T16:06:03Z) - Reservoir Computing with Error Correction: Long-term Behaviors of
Stochastic Dynamical Systems [5.815325960286111]
本稿では,Reservoir Computingと正規化フローを組み合わせたデータ駆動型フレームワークを提案する。
提案手法の有効性をVan der Pal, El Nino-Southern Oscillation Simple model, Lorenz system などいくつかの実験で検証した。
論文 参考訳(メタデータ) (2023-05-01T05:50:17Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Action Matching: Learning Stochastic Dynamics from Samples [10.46643972142224]
アクションマッチング(Action Matching)は、時間進化から独立したサンプルのみを使用して、リッチなダイナミクスのファミリーを学ぶ方法である。
我々は、基礎となる力学に関する明示的な仮定を頼らずに、抽出可能な訓練目標を導出する。
最適輸送との接続にインスパイアされ、確率質量の生成と破壊を含む微分方程式や力学を学ぶためにアクションマッチングの拡張を導出する。
論文 参考訳(メタデータ) (2022-10-13T01:49:48Z) - NeuroFluid: Fluid Dynamics Grounding with Particle-Driven Neural
Radiance Fields [65.07940731309856]
深層学習は流体のような複雑な粒子系の物理力学をモデル化する大きな可能性を示している。
本稿では,流体力学グラウンドリング(fluid dynamics grounding)として知られる,部分的に観測可能なシナリオについて考察する。
我々はNeuroFluidという2段階の異なるネットワークを提案する。
初期形状、粘度、密度が異なる流体の基礎物理学を合理的に推定することが示されている。
論文 参考訳(メタデータ) (2022-03-03T15:13:29Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Learning Unstable Dynamics with One Minute of Data: A
Differentiation-based Gaussian Process Approach [47.045588297201434]
ガウス過程の微分可能性を利用して、真の連続力学の状態依存線形化近似を作成する方法を示す。
9次元セグウェイのような不安定なシステムのシステムダイナミクスを反復的に学習することで、アプローチを検証する。
論文 参考訳(メタデータ) (2021-03-08T05:08:47Z) - A physics-informed operator regression framework for extracting
data-driven continuum models [0.0]
高忠実度分子シミュレーションデータから連続体モデルを発見するためのフレームワークを提案する。
提案手法は、モーダル空間における制御物理のニューラルネットワークパラメタライゼーションを適用する。
局所・非局所拡散過程や単相・多相流など,様々な物理分野におけるフレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2020-09-25T01:13:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。