Uncertainty-Cognizant Model Predictive Control for Energy Management of
Residential Buildings with PVT and Thermal Energy Storage
- URL: http://arxiv.org/abs/2201.08909v1
- Date: Fri, 21 Jan 2022 22:30:13 GMT
- Title: Uncertainty-Cognizant Model Predictive Control for Energy Management of
Residential Buildings with PVT and Thermal Energy Storage
- Authors: Hossein Kalantar-Neyestanaki, Madjid Soltani
- Abstract summary: Building sector accounts for almost 40 percent of the global energy consumption.
This paper offers a building energy system embracing a heat pump, a thermal energy storage system along with grid-connected thermal photovoltaic (PVT) collectors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The building sector accounts for almost 40 percent of the global energy
consumption. This reveals a great opportunity to exploit renewable energy
resources in buildings to achieve the climate target. In this context, this
paper offers a building energy system embracing a heat pump, a thermal energy
storage system along with grid-connected photovoltaic thermal (PVT) collectors
to supply both electric and thermal energy demands of the building with minimum
operating cost. To this end, the paper develops a stochastic model predictive
control (MPC) strategy to optimally determine the set-point of the whole
building energy system while accounting for the uncertainties associated with
the PVT energy generation. This system enables the building to 1-shift its
electric demand from high-peak to off-peak hours and 2- sell electricity to the
grid to make energy arbitrage.
Related papers
- Global Transformer Architecture for Indoor Room Temperature Forecasting [49.32130498861987]
This work presents a global Transformer architecture for indoor temperature forecasting in multi-room buildings.
It aims at optimizing energy consumption and reducing greenhouse gas emissions associated with HVAC systems.
Notably, this study is the first to apply a Transformer architecture for indoor temperature forecasting in multi-room buildings.
arXiv Detail & Related papers (2023-10-31T14:09:32Z) - Energy Optimization for HVAC Systems in Multi-VAV Open Offices: A Deep
Reinforcement Learning Approach [4.323740171581589]
HVAC systems account for about 40% of the total energy cost in the commercial sector.
We propose a low-complexity DRL-based model with multi-input multi-output architecture for the HVAC energy optimization of open-plan offices.
arXiv Detail & Related papers (2023-06-23T07:27:31Z) - Predicting Short Term Energy Demand in Smart Grid: A Deep Learning Approach for Integrating Renewable Energy Sources in Line with SDGs 7, 9, and 13 [0.0]
We propose a deep learning model for predicting energy demand in a smart power grid.
We use long short-term memory networks to capture complex patterns and dependencies in energy demand data.
The proposed model can accurately predict energy demand with a mean absolute error of 1.4%.
arXiv Detail & Related papers (2023-04-08T12:30:59Z) - Combating Uncertainties in Wind and Distributed PV Energy Sources Using
Integrated Reinforcement Learning and Time-Series Forecasting [2.774390661064003]
unpredictability of renewable energy generation poses challenges for electricity providers and utility companies.
We propose a novel framework with two objectives: (i) combating uncertainty of renewable energy in smart grid by leveraging time-series forecasting with Long-Short Term Memory (LSTM) solutions, and (ii) establishing distributed and dynamic decision-making framework with multi-agent reinforcement learning using Deep Deterministic Policy Gradient (DDPG) algorithm.
arXiv Detail & Related papers (2023-02-27T19:12:50Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems.
In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users.
arXiv Detail & Related papers (2022-11-29T01:18:58Z) - Battery and Hydrogen Energy Storage Control in a Smart Energy Network
with Flexible Energy Demand using Deep Reinforcement Learning [2.5666730153464465]
We introduce a hybrid energy storage system composed of battery and hydrogen energy storage.
We propose a deep reinforcement learning-based control strategy to optimise the scheduling of the hybrid energy storage system and energy demand in real-time.
arXiv Detail & Related papers (2022-08-26T16:47:48Z) - Low Emission Building Control with Zero-Shot Reinforcement Learning [70.70479436076238]
Control via Reinforcement Learning (RL) has been shown to significantly improve building energy efficiency.
We show it is possible to obtain emission-reducing policies without a priori--a paradigm we call zero-shot building control.
arXiv Detail & Related papers (2022-08-12T17:13:25Z) - Distributed Multi-Agent Deep Reinforcement Learning Framework for
Whole-building HVAC Control [1.796271361142275]
It is estimated that about 40%-50% of total electricity consumption in commercial buildings can be attributed to Heating, Ventilation, and Air Conditioning systems.
We present a multi-agent, distributed deep reinforcement learning (DRL) framework based on Energy Plus simulation environment.
Using DRL, we achieve more than 75% savings in energy consumption.
arXiv Detail & Related papers (2021-10-26T07:29:16Z) - A Multi-Agent Deep Reinforcement Learning Approach for a Distributed
Energy Marketplace in Smart Grids [58.666456917115056]
This paper presents a Reinforcement Learning based energy market for a prosumer dominated microgrid.
The proposed market model facilitates a real-time and demanddependent dynamic pricing environment, which reduces grid costs and improves the economic benefits for prosumers.
arXiv Detail & Related papers (2020-09-23T02:17:51Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
We propose a data-driven control algorithm based on neural networks to reduce this cost of model identification.
We validate our learning and control algorithms on a two-story building with ten independently controlled zones, located in Italy.
arXiv Detail & Related papers (2020-01-22T00:51:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.