Combating Uncertainties in Wind and Distributed PV Energy Sources Using
Integrated Reinforcement Learning and Time-Series Forecasting
- URL: http://arxiv.org/abs/2302.14094v1
- Date: Mon, 27 Feb 2023 19:12:50 GMT
- Title: Combating Uncertainties in Wind and Distributed PV Energy Sources Using
Integrated Reinforcement Learning and Time-Series Forecasting
- Authors: Arman Ghasemi, Amin Shojaeighadikolaei, Morteza Hashemi
- Abstract summary: unpredictability of renewable energy generation poses challenges for electricity providers and utility companies.
We propose a novel framework with two objectives: (i) combating uncertainty of renewable energy in smart grid by leveraging time-series forecasting with Long-Short Term Memory (LSTM) solutions, and (ii) establishing distributed and dynamic decision-making framework with multi-agent reinforcement learning using Deep Deterministic Policy Gradient (DDPG) algorithm.
- Score: 2.774390661064003
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Renewable energy sources, such as wind and solar power, are increasingly
being integrated into smart grid systems. However, when compared to traditional
energy resources, the unpredictability of renewable energy generation poses
significant challenges for both electricity providers and utility companies.
Furthermore, the large-scale integration of distributed energy resources (such
as PV systems) creates new challenges for energy management in microgrids. To
tackle these issues, we propose a novel framework with two objectives: (i)
combating uncertainty of renewable energy in smart grid by leveraging
time-series forecasting with Long-Short Term Memory (LSTM) solutions, and (ii)
establishing distributed and dynamic decision-making framework with multi-agent
reinforcement learning using Deep Deterministic Policy Gradient (DDPG)
algorithm. The proposed framework considers both objectives concurrently to
fully integrate them, while considering both wholesale and retail markets,
thereby enabling efficient energy management in the presence of uncertain and
distributed renewable energy sources. Through extensive numerical simulations,
we demonstrate that the proposed solution significantly improves the profit of
load serving entities (LSE) by providing a more accurate wind generation
forecast. Furthermore, our results demonstrate that households with PV and
battery installations can increase their profits by using intelligent battery
charge/discharge actions determined by the DDPG agents.
Related papers
- EnergAIze: Multi Agent Deep Deterministic Policy Gradient for Vehicle to Grid Energy Management [0.0]
This paper introduces EnergAIze, a Multi-Agent Reinforcement Learning (MARL) energy management framework.
It enables user-centric and multi-objective energy management by allowing each prosumer to select from a range of personal management objectives.
The efficacy of EnergAIze was evaluated through case studies employing the CityLearn simulation framework.
arXiv Detail & Related papers (2024-04-02T23:16:17Z) - Peer-to-Peer Energy Trading of Solar and Energy Storage: A Networked Multiagent Reinforcement Learning Approach [5.671124014371425]
We propose multi-agent reinforcement learning (MARL) frameworks to help automate consumers' bidding and management of their solar PV and energy storage resources.
We show how the MARL frameworks can integrate physical network constraints to realize voltage control, hence ensuring physical feasibility of the P2P energy trading.
arXiv Detail & Related papers (2024-01-25T05:05:55Z) - Predicting Short Term Energy Demand in Smart Grid: A Deep Learning Approach for Integrating Renewable Energy Sources in Line with SDGs 7, 9, and 13 [0.0]
We propose a deep learning model for predicting energy demand in a smart power grid.
We use long short-term memory networks to capture complex patterns and dependencies in energy demand data.
The proposed model can accurately predict energy demand with a mean absolute error of 1.4%.
arXiv Detail & Related papers (2023-04-08T12:30:59Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems.
In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users.
arXiv Detail & Related papers (2022-11-29T01:18:58Z) - Evaluating Distribution System Reliability with Hyperstructures Graph
Convolutional Nets [74.51865676466056]
We show how graph convolutional networks and hyperstructures representation learning framework can be employed for accurate, reliable, and computationally efficient distribution grid planning.
Our numerical experiments show that the proposed Hyper-GCNNs approach yields substantial gains in computational efficiency.
arXiv Detail & Related papers (2022-11-14T01:29:09Z) - Battery and Hydrogen Energy Storage Control in a Smart Energy Network
with Flexible Energy Demand using Deep Reinforcement Learning [2.5666730153464465]
We introduce a hybrid energy storage system composed of battery and hydrogen energy storage.
We propose a deep reinforcement learning-based control strategy to optimise the scheduling of the hybrid energy storage system and energy demand in real-time.
arXiv Detail & Related papers (2022-08-26T16:47:48Z) - Deep Reinforcement Learning Based Multidimensional Resource Management
for Energy Harvesting Cognitive NOMA Communications [64.1076645382049]
Combination of energy harvesting (EH), cognitive radio (CR), and non-orthogonal multiple access (NOMA) is a promising solution to improve energy efficiency.
In this paper, we study the spectrum, energy, and time resource management for deterministic-CR-NOMA IoT systems.
arXiv Detail & Related papers (2021-09-17T08:55:48Z) - A Multi-Agent Deep Reinforcement Learning Approach for a Distributed
Energy Marketplace in Smart Grids [58.666456917115056]
This paper presents a Reinforcement Learning based energy market for a prosumer dominated microgrid.
The proposed market model facilitates a real-time and demanddependent dynamic pricing environment, which reduces grid costs and improves the economic benefits for prosumers.
arXiv Detail & Related papers (2020-09-23T02:17:51Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.