論文の概要: Visual Object Tracking on Multi-modal RGB-D Videos: A Review
- arxiv url: http://arxiv.org/abs/2201.09207v3
- Date: Sun, 17 Mar 2024 05:10:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 07:06:24.354436
- Title: Visual Object Tracking on Multi-modal RGB-D Videos: A Review
- Title(参考訳): マルチモーダルRGB-Dビデオにおけるビジュアルオブジェクト追跡
- Authors: Xue-Feng Zhu, Tianyang Xu, Xiao-Jun Wu,
- Abstract要約: 本研究の目的は,RGB-D追跡研究の相対的知識を要約することである。
具体的には、関連するRGB-D追跡ベンチマークデータセットと、対応するパフォーマンス測定を一般化する。
- 参考スコア(独自算出の注目度): 16.098468526632473
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The development of visual object tracking has continued for decades. Recent years, as the wide accessibility of the low-cost RGBD sensors, the task of visual object tracking on RGB-D videos has drawn much attention. Compared to conventional RGB-only tracking, the RGB-D videos can provide more information that facilitates objecting tracking in some complicated scenarios. The goal of this review is to summarize the relative knowledge of the research filed of RGB-D tracking. To be specific, we will generalize the related RGB-D tracking benchmarking datasets as well as the corresponding performance measurements. Besides, the existing RGB-D tracking methods are summarized in the paper. Moreover, we discuss the possible future direction in the field of RGB-D tracking.
- Abstract(参考訳): 視覚的物体追跡の開発は何十年も続いている。
近年,ローコストなRGBDセンサの広範囲なアクセシビリティ向上に伴い,RGB-Dビデオにおける視覚的物体追跡の課題が注目されている。
従来のRGBのみのトラッキングと比較して、RGB-Dビデオは複雑なシナリオでオブジェクト追跡を容易にする情報を提供することができる。
本研究の目的は,RGB-D追跡研究の相対的知識を要約することである。
具体的には、関連するRGB-D追跡ベンチマークデータセットと、対応するパフォーマンス測定を一般化する。
また,既存のRGB-D追跡手法についても概説した。
さらに,RGB-Dトラッキング分野における今後の方向性についても検討する。
関連論文リスト
- ViDSOD-100: A New Dataset and a Baseline Model for RGB-D Video Salient Object Detection [51.16181295385818]
まず、注釈付きRGB-D video SODOD(DSOD-100)データセットを収集し、合計9,362フレーム内に100の動画を含む。
各ビデオのフレームはすべて、高品質なサリエンシアノテーションに手動で注釈付けされる。
本稿では,RGB-Dサリアンオブジェクト検出のための新しいベースラインモデル,attentive triple-fusion network (ATF-Net)を提案する。
論文 参考訳(メタデータ) (2024-06-18T12:09:43Z) - ARKitTrack: A New Diverse Dataset for Tracking Using Mobile RGB-D Data [75.73063721067608]
我々は,AppleのiPhoneおよびiPadに搭載されたコンシューマグレードのLiDARスキャナーによってキャプチャされた静的および動的シーンの両方を対象とした新しいRGB-D追跡データセットを提案する。
ARKitTrackには300のRGB-Dシーケンス、455のターゲット、229.7Kのビデオフレームが含まれている。
詳細な実験分析により,ARKitTrackデータセットがRGB-D追跡を著しく促進し,提案手法が芸術的状況と良好に比較できることが確認された。
論文 参考訳(メタデータ) (2023-03-24T09:51:13Z) - Learning Dual-Fused Modality-Aware Representations for RGBD Tracking [67.14537242378988]
従来のRGBオブジェクトトラッキングと比較して、奥行きモードの追加は、ターゲットとバックグラウンドの干渉を効果的に解決することができる。
既存のRGBDトラッカーでは2つのモードを別々に使用しており、特に有用な共有情報は無視されている。
DMTracker(Dual-fused Modality-aware Tracker)を提案する。DMTrackerは,RGBDのロバストな追跡のために,対象対象物の情報的および識別的表現を学習することを目的としている。
論文 参考訳(メタデータ) (2022-11-06T07:59:07Z) - RGBD1K: A Large-scale Dataset and Benchmark for RGB-D Object Tracking [30.448658049744775]
注釈付きRGB-D追跡データが限られているため、最先端のRGB-Dトラッカーのほとんどは、高性能なRGB-Dトラッカーの単純な拡張である。
データセット不足問題に対処するため,RGBD1Kという新しいRGB-Dデータセットを報告した。
論文 参考訳(メタデータ) (2022-08-21T03:07:36Z) - RGBD Object Tracking: An In-depth Review [89.96221353160831]
まず、RGBD融合、深度利用、追跡フレームワークなど、さまざまな視点からRGBDオブジェクトトラッカーをレビューする。
我々はRGBDトラッカーの代表セットをベンチマークし、その性能に基づいて詳細な分析を行う。
論文 参考訳(メタデータ) (2022-03-26T18:53:51Z) - Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB Images [89.81919625224103]
RGB-D Salient Object Detection (SOD) のための深層モデルの訓練は、しばしば多数のラベル付きRGB-D画像を必要とする。
本稿では、ラベルのないRGB画像を活用するために、Dual-Semi RGB-D Salient Object Detection Network (DS-Net)を提案する。
論文 参考訳(メタデータ) (2022-01-01T03:02:27Z) - DepthTrack : Unveiling the Power of RGBD Tracking [29.457114656913944]
この作業では、新しいRGBDトラッキングデータセットであるDepth-Trackが導入されている。
既存の最大データセットの2倍のシーケンス(200)とシーンタイプ(40)を持つ。
シーケンスの平均長(1473)、変形可能なオブジェクト数(16)、追跡属性数(15)が増加する。
論文 参考訳(メタデータ) (2021-08-31T16:42:38Z) - Synergistic saliency and depth prediction for RGB-D saliency detection [76.27406945671379]
既存のRGB-Dサリエンシデータセットは小さく、多様なシナリオに対して過度に適合し、限定的な一般化につながる可能性がある。
そこで本研究では,RGB-Dサリエンシ検出のための半教師付きシステムを提案する。
論文 参考訳(メタデータ) (2020-07-03T14:24:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。