Partition-Based Active Learning for Graph Neural Networks
- URL: http://arxiv.org/abs/2201.09391v1
- Date: Sun, 23 Jan 2022 22:51:14 GMT
- Title: Partition-Based Active Learning for Graph Neural Networks
- Authors: Jiaqi Ma, Ziqiao Ma, Joyce Chai, Qiaozhu Mei
- Abstract summary: We study the problem of semi-supervised learning with Graph Neural Networks (GNNs) in an active learning setup.
We propose GraphPart, a novel partition-based active learning approach for GNNs.
- Score: 17.386869902409153
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of semi-supervised learning with Graph Neural Networks
(GNNs) in an active learning setup. We propose GraphPart, a novel
partition-based active learning approach for GNNs. GraphPart first splits the
graph into disjoint partitions and then selects representative nodes within
each partition to query. The proposed method is motivated by a novel analysis
of the classification error under realistic smoothness assumptions over the
graph and the node features. Extensive experiments on multiple benchmark
datasets demonstrate that the proposed method outperforms existing active
learning methods for GNNs under a wide range of annotation budget constraints.
In addition, the proposed method does not introduce additional hyperparameters,
which is crucial for model training, especially in the active learning setting
where a labeled validation set may not be available.
Related papers
- GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
We study a new problem, GNN model evaluation, that aims to assess the performance of a specific GNN model trained on labeled and observed graphs.
We propose a two-stage GNN model evaluation framework, including (1) DiscGraph set construction and (2) GNNEvaluator training and inference.
Under the effective training supervision from the DiscGraph set, GNNEvaluator learns to precisely estimate node classification accuracy of the to-be-evaluated GNN model.
arXiv Detail & Related papers (2023-10-23T05:51:59Z) - Learning How to Propagate Messages in Graph Neural Networks [55.2083896686782]
This paper studies the problem of learning message propagation strategies for graph neural networks (GNNs)
We introduce the optimal propagation steps as latent variables to help find the maximum-likelihood estimation of the GNN parameters.
Our proposed framework can effectively learn personalized and interpretable propagate strategies of messages in GNNs.
arXiv Detail & Related papers (2023-10-01T15:09:59Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
We propose an efficient label regularization technique, namely Label Deconvolution (LD), to alleviate the learning bias by a novel and highly scalable approximation to the inverse mapping of GNNs.
Experiments demonstrate LD significantly outperforms state-of-the-art methods on Open Graph datasets Benchmark.
arXiv Detail & Related papers (2023-09-26T13:09:43Z) - Mitigating Semantic Confusion from Hostile Neighborhood for Graph Active
Learning [38.5372139056485]
Graph Active Learning (GAL) aims to find the most informative nodes in graphs for annotation to maximize the Graph Neural Networks (GNNs) performance.
Gal strategies may introduce semantic confusion to the selected training set, particularly when graphs are noisy.
We present Semantic-aware Active learning framework for Graphs (SAG) to mitigate the semantic confusion problem.
arXiv Detail & Related papers (2023-08-17T07:06:54Z) - Structural Explanations for Graph Neural Networks using HSIC [21.929646888419914]
Graph neural networks (GNNs) are a type of neural model that tackle graphical tasks in an end-to-end manner.
The complicated dynamics of GNNs make it difficult to understand which parts of the graph features contribute more strongly to the predictions.
In this study, a flexible model agnostic explanation method is proposed to detect significant structures in graphs.
arXiv Detail & Related papers (2023-02-04T09:46:47Z) - An Empirical Study of Retrieval-enhanced Graph Neural Networks [48.99347386689936]
Graph Neural Networks (GNNs) are effective tools for graph representation learning.
We propose a retrieval-enhanced scheme called GRAPHRETRIEVAL, which is agnostic to the choice of graph neural network models.
We conduct comprehensive experiments over 13 datasets, and we observe that GRAPHRETRIEVAL is able to reach substantial improvements over existing GNNs.
arXiv Detail & Related papers (2022-06-01T09:59:09Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Node2Seq: Towards Trainable Convolutions in Graph Neural Networks [59.378148590027735]
We propose a graph network layer, known as Node2Seq, to learn node embeddings with explicitly trainable weights for different neighboring nodes.
For a target node, our method sorts its neighboring nodes via attention mechanism and then employs 1D convolutional neural networks (CNNs) to enable explicit weights for information aggregation.
In addition, we propose to incorporate non-local information for feature learning in an adaptive manner based on the attention scores.
arXiv Detail & Related papers (2021-01-06T03:05:37Z) - When Contrastive Learning Meets Active Learning: A Novel Graph Active
Learning Paradigm with Self-Supervision [19.938379604834743]
This paper studies active learning (AL) on graphs, whose purpose is to discover the most informative nodes to maximize the performance of graph neural networks (GNNs)
Motivated by the success of contrastive learning (CL), we propose a novel paradigm that seamlessly integrates graph AL with CL.
Comprehensive, confounding-free experiments on five public datasets demonstrate the superiority of our method over state-of-the-arts.
arXiv Detail & Related papers (2020-10-30T06:20:07Z) - CAGNN: Cluster-Aware Graph Neural Networks for Unsupervised Graph
Representation Learning [19.432449825536423]
Unsupervised graph representation learning aims to learn low-dimensional node embeddings without supervision.
We present a novel cluster-aware graph neural network (CAGNN) model for unsupervised graph representation learning using self-supervised techniques.
arXiv Detail & Related papers (2020-09-03T13:57:18Z) - Graph Neighborhood Attentive Pooling [0.5493410630077189]
Network representation learning (NRL) is a powerful technique for learning low-dimensional vector representation of high-dimensional and sparse graphs.
We propose a novel context-sensitive algorithm called GAP that learns to attend on different parts of a node's neighborhood using attentive pooling networks.
arXiv Detail & Related papers (2020-01-28T15:05:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.