Accelerated Intravascular Ultrasound Imaging using Deep Reinforcement
Learning
- URL: http://arxiv.org/abs/2201.09522v1
- Date: Mon, 24 Jan 2022 08:33:21 GMT
- Title: Accelerated Intravascular Ultrasound Imaging using Deep Reinforcement
Learning
- Authors: Tristan S.W. Stevens, Nishith Chennakeshava, Frederik J. de Bruijn,
Martin Peka\v{r}, Ruud J.G. van Sloun
- Abstract summary: Intravascular ultrasound (IVUS) offers a unique perspective in the treatment of vascular diseases.
We present the use of deep reinforcement learning to deal with the current physical information bottleneck.
- Score: 16.350568421800794
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Intravascular ultrasound (IVUS) offers a unique perspective in the treatment
of vascular diseases by creating a sequence of ultrasound-slices acquired from
within the vessel. However, unlike conventional hand-held ultrasound, the thin
catheter only provides room for a small number of physical channels for signal
transfer from a transducer-array at the tip. For continued improvement of image
quality and frame rate, we present the use of deep reinforcement learning to
deal with the current physical information bottleneck. Valuable inspiration has
come from the field of magnetic resonance imaging (MRI), where learned
acquisition schemes have brought significant acceleration in image acquisition
at competing image quality. To efficiently accelerate IVUS imaging, we propose
a framework that utilizes deep reinforcement learning for an optimal adaptive
acquisition policy on a per-frame basis enabled by actor-critic methods and
Gumbel top-$K$ sampling.
Related papers
- Vascular Segmentation of Functional Ultrasound Images using Deep Learning [0.0]
We introduce the first deep learning-based segmentation tool for functional ultrasound (fUS) images.
We achieve competitive segmentation performance, with 90% accuracy, with 71% robustness and an IU of 0.59, using only 100 temporal frames from a fUS stack.
This work offers a non-invasive, cost-effective alternative to localization microscopy, enhancing fUS data interpretation and improving understanding of vessel function.
arXiv Detail & Related papers (2024-10-28T09:00:28Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - DopUS-Net: Quality-Aware Robotic Ultrasound Imaging based on Doppler
Signal [48.97719097435527]
DopUS-Net combines the Doppler images with B-mode images to increase the segmentation accuracy and robustness of small blood vessels.
An artery re-identification module qualitatively evaluate the real-time segmentation results and automatically optimize the probe pose for enhanced Doppler images.
arXiv Detail & Related papers (2023-05-15T18:19:29Z) - Reslicing Ultrasound Images for Data Augmentation and Vessel
Reconstruction [22.336362581634706]
This paper introduces RESUS, a weak supervision data augmentation technique for ultrasound images based on slicing reconstructed 3D volumes from tracked 2D images.
We generate views which cannot be easily obtained in vivo due to physical constraints of ultrasound imaging, and use these augmented ultrasound images to train a semantic segmentation model.
We demonstrate that RESUS achieves statistically significant improvement over training with non-augmented images and highlight qualitative improvements through vessel reconstruction.
arXiv Detail & Related papers (2023-01-18T03:22:47Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
We propose a convolutional long short-term memory (Conv-LSTM) based recurrent neural network (RNN), or ConvLR, to reconstruct interventional images with golden-angle radial sampling.
The proposed algorithm has the potential to achieve real-time i-MRI for DBS and can be used for general purpose MR-guided intervention.
arXiv Detail & Related papers (2022-03-28T14:03:45Z) - Deep Learning for Ultrasound Beamforming [120.12255978513912]
Beamforming, the process of mapping received ultrasound echoes to the spatial image domain, lies at the heart of the ultrasound image formation chain.
Modern ultrasound imaging leans heavily on innovations in powerful digital receive channel processing.
Deep learning methods can play a compelling role in the digital beamforming pipeline.
arXiv Detail & Related papers (2021-09-23T15:15:21Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - CNN-Based Image Reconstruction Method for Ultrafast Ultrasound Imaging [9.659642285903418]
Ultrafast ultrasound (US) revolutionized biomedical imaging with its capability of acquiring full-view frames at over 1 kHz.
It suffers from strong diffraction artifacts, mainly caused by grating lobes, side lobes, or edge waves.
We propose a two-step convolutional neural network (CNN)-based image reconstruction method, compatible with real-time imaging.
arXiv Detail & Related papers (2020-08-28T17:15:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.