論文の概要: Question Generation for Evaluating Cross-Dataset Shifts in Multi-modal
Grounding
- arxiv url: http://arxiv.org/abs/2201.09639v1
- Date: Mon, 24 Jan 2022 12:42:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-25 22:29:56.646183
- Title: Question Generation for Evaluating Cross-Dataset Shifts in Multi-modal
Grounding
- Title(参考訳): マルチモーダルグラウンドにおけるクロスデータセットシフト評価のための質問生成
- Authors: Arjun R. Akula
- Abstract要約: 視覚的質問応答(VQA)は、入力画像に関する自然言語の質問に応答するマルチモーダルタスクである。
我々は、VQAモデルのクロスデータセット適応能力を体系的に評価するのに役立つOODシフトの自動生成を容易にするVQGモジュールに取り組んでいる。
- 参考スコア(独自算出の注目度): 7.995360025953931
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Visual question answering (VQA) is the multi-modal task of answering natural
language questions about an input image. Through cross-dataset adaptation
methods, it is possible to transfer knowledge from a source dataset with larger
train samples to a target dataset where training set is limited. Suppose a VQA
model trained on one dataset train set fails in adapting to another, it is hard
to identify the underlying cause of domain mismatch as there could exists a
multitude of reasons such as image distribution mismatch and question
distribution mismatch. At UCLA, we are working on a VQG module that facilitate
in automatically generating OOD shifts that aid in systematically evaluating
cross-dataset adaptation capabilities of VQA models.
- Abstract(参考訳): 視覚的質問応答(VQA)は、入力画像に関する自然言語質問に応答するマルチモーダルタスクである。
クロスデータセット適応手法により、より大きなトレインサンプルを持つソースデータセットからトレーニングセットが制限されたターゲットデータセットに知識を転送することができる。
あるデータセットのトレインセットでトレーニングされたVQAモデルが他のデータセットに適応できないと仮定すると、画像分布ミスマッチや質問分布ミスマッチといったさまざまな理由がある可能性があるため、ドメインミスマッチの根本原因を特定するのは難しい。
UCLAでは、VQAモデルのクロスデータセット適応能力を体系的に評価するのに役立つOODシフトの自動生成を容易にするVQGモジュールに取り組んでいる。
関連論文リスト
- VQA-GEN: A Visual Question Answering Benchmark for Domain Generalization [15.554325659263316]
視覚的質問応答(VQA)モデルは、視覚的テキスト推論能力を示すように設計されている。
既存のVQA用の領域一般化データセットは、テキストシフトに一方的な焦点をあてている。
VQA-GEN(VQA-GEN)は、シフト誘導パイプラインによって生成された分散シフトのための最初のマルチモーダルベンチマークデータセットである。
論文 参考訳(メタデータ) (2023-11-01T19:43:56Z) - UNK-VQA: A Dataset and a Probe into the Abstention Ability of Multi-modal Large Models [55.22048505787125]
本稿ではUNK-VQAと呼ばれる包括的データセットを提案する。
まず、画像または疑問について意図的に摂動することで、既存のデータを拡大する。
そこで我々は,新たなマルチモーダル大規模モデルのゼロショット性能と少数ショット性能を広範囲に評価した。
論文 参考訳(メタデータ) (2023-10-17T02:38:09Z) - From Easy to Hard: Learning Language-guided Curriculum for Visual
Question Answering on Remote Sensing Data [27.160303686163164]
リモートセンシングシーンに対する視覚的質問応答(VQA)は、インテリジェントな人-コンピュータインタラクションシステムにおいて大きな可能性を秘めている。
RSVQAデータセットにはオブジェクトアノテーションがないため、モデルが情報的領域表現を活用できない。
RSVQAタスクでは、各画像の難易度が明らかに異なる。
言語誘導の全体的特徴と地域的特徴を共同で抽出する多段階視覚特徴学習法を提案する。
論文 参考訳(メタデータ) (2022-05-06T11:37:00Z) - Domain-robust VQA with diverse datasets and methods but no target labels [34.331228652254566]
VQAのドメイン適応は、さらなる複雑さのためにオブジェクト認識の適応とは異なる。
これらの課題に取り組むために、まず一般的なVQAデータセット間のドメインシフトを定量化します。
また,画像領域と質問領域の合成シフトを別々に構築する。
論文 参考訳(メタデータ) (2021-03-29T22:24:50Z) - MUTANT: A Training Paradigm for Out-of-Distribution Generalization in
Visual Question Answering [58.30291671877342]
MUTANTは、モデルが知覚的に類似しているが意味的に異なる入力の変異に露出する訓練パラダイムである。
MUTANTは、VQA-CPに新しい最先端の精度を確立し、10.57%$改善した。
論文 参考訳(メタデータ) (2020-09-18T00:22:54Z) - Robust Question Answering Through Sub-part Alignment [53.94003466761305]
我々はアライメント問題として質問応答をモデル化する。
私たちは、SQuAD v1.1でモデルをトレーニングし、いくつかの逆および外ドメインデータセットでそれをテストします。
論文 参考訳(メタデータ) (2020-04-30T09:10:57Z) - Template-Based Question Generation from Retrieved Sentences for Improved
Unsupervised Question Answering [98.48363619128108]
擬似学習データを用いてQAモデルを訓練するための教師なしアプローチを提案する。
関連した検索文に簡単なテンプレートを適用してQA学習のための質問を生成すると、元の文脈文よりも、下流QAのパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2020-04-24T17:57:45Z) - Unshuffling Data for Improved Generalization [65.57124325257409]
トレーニングディストリビューションを越えた一般化は、マシンラーニングにおける中核的な課題である。
本研究では,複数の学習環境として扱われる非d.d.サブセットにデータを分割することで,アウト・オブ・ディストリビューションの一般化を向上したモデル学習を導出できることを示す。
論文 参考訳(メタデータ) (2020-02-27T03:07:41Z) - ManyModalQA: Modality Disambiguation and QA over Diverse Inputs [73.93607719921945]
本稿では, エージェントが3つの異なるモダリティを考慮し, 質問に答えなければならない, マルチモーダルな質問応答課題, ManyModalQAを提案する。
われわれはウィキペディアをスクラップしてデータを収集し、クラウドソーシングを利用して質問と回答のペアを収集する。
論文 参考訳(メタデータ) (2020-01-22T14:39:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。