Tensor and Matrix Low-Rank Value-Function Approximation in Reinforcement Learning
- URL: http://arxiv.org/abs/2201.09736v3
- Date: Mon, 27 May 2024 19:58:52 GMT
- Title: Tensor and Matrix Low-Rank Value-Function Approximation in Reinforcement Learning
- Authors: Sergio Rozada, Santiago Paternain, Antonio G. Marques,
- Abstract summary: Value-function approximation is a central problem in Reinforcement Learning (RL)
This paper puts forth a parsimonious non-parametric approach, where we use low-rank algorithms to estimate the VF matrix in an online and model-free fashion.
As VFs tend to be multi-dimensional, we propose replacing the classical VF matrix representation with a tensor representation and, then, use the PARAFAC decomposition to design an online model-free tensor low-rank algorithm.
- Score: 11.317136648551536
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Value-function (VF) approximation is a central problem in Reinforcement Learning (RL). Classical non-parametric VF estimation suffers from the curse of dimensionality. As a result, parsimonious parametric models have been adopted to approximate VFs in high-dimensional spaces, with most efforts being focused on linear and neural-network-based approaches. Differently, this paper puts forth a a parsimonious non-parametric approach, where we use stochastic low-rank algorithms to estimate the VF matrix in an online and model-free fashion. Furthermore, as VFs tend to be multi-dimensional, we propose replacing the classical VF matrix representation with a tensor (multi-way array) representation and, then, use the PARAFAC decomposition to design an online model-free tensor low-rank algorithm. Different versions of the algorithms are proposed, their complexity is analyzed, and their performance is assessed numerically using standardized RL environments.
Related papers
- Regularized Projection Matrix Approximation with Applications to Community Detection [1.3761665705201904]
This paper introduces a regularized projection matrix approximation framework designed to recover cluster information from the affinity matrix.
We investigate three distinct penalty functions, each specifically tailored to address bounded, positive, and sparse scenarios.
Numerical experiments conducted on both synthetic and real-world datasets reveal that our regularized projection matrix approximation approach significantly outperforms state-of-the-art methods in clustering performance.
arXiv Detail & Related papers (2024-05-26T15:18:22Z) - Nonparametric Automatic Differentiation Variational Inference with
Spline Approximation [7.5620760132717795]
We develop a nonparametric approximation approach that enables flexible posterior approximation for distributions with complicated structures.
Compared with widely-used nonparametrical inference methods, the proposed method is easy to implement and adaptive to various data structures.
Experiments demonstrate the efficiency of the proposed method in approximating complex posterior distributions and improving the performance of generative models with incomplete data.
arXiv Detail & Related papers (2024-03-10T20:22:06Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
Deep Neural Network Network (DNN) models are used for programming purposes.
In this paper we examine the use of convex neural recovery models.
We show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
We also show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
arXiv Detail & Related papers (2023-12-19T23:04:56Z) - Regularization and Variance-Weighted Regression Achieves Minimax
Optimality in Linear MDPs: Theory and Practice [79.48432795639403]
Mirror descent value iteration (MDVI) is an abstraction of Kullback-Leibler (KL) and entropy-regularized reinforcement learning (RL)
We study MDVI with linear function approximation through its sample complexity required to identify an $varepsilon$-optimal policy.
We present Variance-Weighted Least-Squares MDVI, the first theoretical algorithm that achieves nearly minimax optimal sample complexity for infinite-horizon linear MDPs.
arXiv Detail & Related papers (2023-05-22T16:13:05Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Generalised Latent Assimilation in Heterogeneous Reduced Spaces with
Machine Learning Surrogate Models [10.410970649045943]
We develop a system which combines reduced-order surrogate models with a novel data assimilation technique.
Generalised Latent Assimilation can benefit both the efficiency provided by the reduced-order modelling and the accuracy of data assimilation.
arXiv Detail & Related papers (2022-04-07T15:13:12Z) - Low-rank State-action Value-function Approximation [11.026561518386025]
Several high-dimensional state problems can be well-approximated by an intrinsic low-rank structure.
This paper proposes different algorithms to estimate a low-rank factorization of the $Q(s, a)$ matrix.
arXiv Detail & Related papers (2021-04-18T10:31:39Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
Joint network topology inference represents a canonical problem of learning multiple graph Laplacian matrices from heterogeneous graph signals.
We propose a general graph estimator based on a novel structured fusion regularization.
We show that the proposed graph estimator enjoys both high computational efficiency and rigorous theoretical guarantee.
arXiv Detail & Related papers (2021-03-05T04:42:32Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - Multi-View Spectral Clustering Tailored Tensor Low-Rank Representation [105.33409035876691]
This paper explores the problem of multi-view spectral clustering (MVSC) based on tensor low-rank modeling.
We design a novel structured tensor low-rank norm tailored to MVSC.
We show that the proposed method outperforms state-of-the-art methods to a significant extent.
arXiv Detail & Related papers (2020-04-30T11:52:12Z) - Efficient Alternating Least Squares Algorithms for Low Multilinear Rank
Approximation of Tensors [6.308492837096872]
We propose a new class of truncated HOSVD algorithms based on alternating least squares (ALS) for efficiently computing the low multilinear rank approximation of tensors.
ALS-based approaches are able to eliminate the redundant computations of the singular vectors of intermediate matrices and are therefore free of data explosion.
Numerical experiments with large-scale tensors from both synthetic and real-world applications demonstrate that ALS-based methods can substantially reduce the total cost of the original ones and are highly scalable for parallel computing.
arXiv Detail & Related papers (2020-04-06T11:58:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.