Nonparametric Automatic Differentiation Variational Inference with
Spline Approximation
- URL: http://arxiv.org/abs/2403.06302v1
- Date: Sun, 10 Mar 2024 20:22:06 GMT
- Title: Nonparametric Automatic Differentiation Variational Inference with
Spline Approximation
- Authors: Yuda Shao, Shan Yu, Tianshu Feng
- Abstract summary: We develop a nonparametric approximation approach that enables flexible posterior approximation for distributions with complicated structures.
Compared with widely-used nonparametrical inference methods, the proposed method is easy to implement and adaptive to various data structures.
Experiments demonstrate the efficiency of the proposed method in approximating complex posterior distributions and improving the performance of generative models with incomplete data.
- Score: 7.5620760132717795
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic Differentiation Variational Inference (ADVI) is efficient in
learning probabilistic models. Classic ADVI relies on the parametric approach
to approximate the posterior. In this paper, we develop a spline-based
nonparametric approximation approach that enables flexible posterior
approximation for distributions with complicated structures, such as skewness,
multimodality, and bounded support. Compared with widely-used nonparametric
variational inference methods, the proposed method is easy to implement and
adaptive to various data structures. By adopting the spline approximation, we
derive a lower bound of the importance weighted autoencoder and establish the
asymptotic consistency. Experiments demonstrate the efficiency of the proposed
method in approximating complex posterior distributions and improving the
performance of generative models with incomplete data.
Related papers
- Variational Autoencoders for Efficient Simulation-Based Inference [0.3495246564946556]
We present a generative modeling approach based on the variational inference framework for likelihood-free simulation-based inference.
We demonstrate the efficacy of these models on well-established benchmark problems, achieving results comparable to flow-based approaches.
arXiv Detail & Related papers (2024-11-21T12:24:13Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
We present a novel extension of multi-task Gaussian Cox processes for modeling heterogeneous correlated tasks jointly.
A MOGP prior over the parameters of the dedicated likelihoods for classification, regression and point process tasks can facilitate sharing of information between heterogeneous tasks.
We derive a mean-field approximation to realize closed-form iterative updates for estimating model parameters.
arXiv Detail & Related papers (2023-08-29T15:01:01Z) - VI-DGP: A variational inference method with deep generative prior for
solving high-dimensional inverse problems [0.7734726150561089]
We propose a novel approximation method for estimating the high-dimensional posterior distribution.
This approach leverages a deep generative model to learn a prior model capable of generating spatially-varying parameters.
The proposed method can be fully implemented in an automatic differentiation manner.
arXiv Detail & Related papers (2023-02-22T06:48:10Z) - Manifold Gaussian Variational Bayes on the Precision Matrix [70.44024861252554]
We propose an optimization algorithm for Variational Inference (VI) in complex models.
We develop an efficient algorithm for Gaussian Variational Inference whose updates satisfy the positive definite constraint on the variational covariance matrix.
Due to its black-box nature, MGVBP stands as a ready-to-use solution for VI in complex models.
arXiv Detail & Related papers (2022-10-26T10:12:31Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Online Variational Filtering and Parameter Learning [26.79116194327116]
We present a variational method for online state estimation and parameter learning in state-space models (SSMs)
We use gradients to simultaneously optimize a lower bound on the log evidence with respect to both model parameters and a variational approximation of the states' posterior distribution.
Unlike existing approaches, our method is able to operate in an entirely online manner, such that historic observations do not require revisitation after being incorporated and the cost of updates at each time step remains constant.
arXiv Detail & Related papers (2021-10-26T10:25:04Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - A similarity-based Bayesian mixture-of-experts model [0.5156484100374058]
We present a new non-parametric mixture-of-experts model for multivariate regression problems.
Using a conditionally specified model, predictions for out-of-sample inputs are based on similarities to each observed data point.
Posterior inference is performed on the parameters of the mixture as well as the distance metric.
arXiv Detail & Related papers (2020-12-03T18:08:30Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
We show that common optimization methods lead to poor variational approximations if the problem is moderately large.
Motivated by these findings, we develop a more robust and accurate optimization framework by viewing the underlying algorithm as producing a Markov chain.
arXiv Detail & Related papers (2020-09-01T19:12:11Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z) - Misspecification-robust likelihood-free inference in high dimensions [13.934999364767918]
We introduce an extension of the popular Bayesian optimisation based approach to approximate discrepancy functions in a probabilistic manner.
Our approach achieves computational scalability for higher dimensional parameter spaces by using separate acquisition functions and discrepancies for each parameter.
The method successfully performs computationally efficient inference in a 100-dimensional space on canonical examples and compares favourably to existing modularised ABC methods.
arXiv Detail & Related papers (2020-02-21T16:06:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.