論文の概要: Constrained Policy Optimization via Bayesian World Models
- arxiv url: http://arxiv.org/abs/2201.09802v2
- Date: Tue, 25 Jan 2022 16:41:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-26 12:13:56.308607
- Title: Constrained Policy Optimization via Bayesian World Models
- Title(参考訳): ベイズ世界モデルによる制約付き政策最適化
- Authors: Yarden As, Ilnura Usmanova, Sebastian Curi, Andreas Krause
- Abstract要約: LAMBDAは、マルコフ決定プロセスを通じてモデル化された安全クリティカルタスクにおけるポリシー最適化のためのモデルに基づくアプローチである。
LAMBDA のSafety-Gymベンチマークスイートにおける技術性能について,サンプル効率と制約違反の観点から示す。
- 参考スコア(独自算出の注目度): 79.0077602277004
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Improving sample-efficiency and safety are crucial challenges when deploying
reinforcement learning in high-stakes real world applications. We propose
LAMBDA, a novel model-based approach for policy optimization in safety critical
tasks modeled via constrained Markov decision processes. Our approach utilizes
Bayesian world models, and harnesses the resulting uncertainty to maximize
optimistic upper bounds on the task objective, as well as pessimistic upper
bounds on the safety constraints. We demonstrate LAMBDA's state of the art
performance on the Safety-Gym benchmark suite in terms of sample efficiency and
constraint violation.
- Abstract(参考訳): 高精細な現実世界のアプリケーションで強化学習を展開する場合、サンプル効率と安全性の向上は重要な課題である。
制約付きマルコフ決定プロセスを通じてモデル化された安全クリティカルタスクにおけるポリシー最適化のための新しいモデルベースアプローチであるLAMBDAを提案する。
提案手法は,ベイズ世界モデルを利用し,結果として生じる不確実性を利用してタスク目標の楽観的な上限を最大化し,安全性制約の悲観的上限を最大化する。
LAMBDA のSafety-Gymベンチマークスイート上で,サンプル効率と制約違反の観点から,その性能を実証する。
関連論文リスト
- Enhanced Safety in Autonomous Driving: Integrating Latent State Diffusion Model for End-to-End Navigation [5.928213664340974]
本研究は自動運転の制御最適化問題における安全性問題に対処する。
本稿では,条件付きバリュー・アット・リスクに基づくソフトアクター批判を利用して,ポリシー最適化のための新しいモデルベースアプローチを提案する。
本手法では, 安全探索を誘導する最悪のアクターを導入し, 予測不可能なシナリオにおいても, 安全要件の厳密な遵守を確保する。
論文 参考訳(メタデータ) (2024-07-08T18:32:40Z) - FOSP: Fine-tuning Offline Safe Policy through World Models [3.7971075341023526]
モデルに基づく強化学習(RL)は、高次元タスクを扱う訓練効率と能力を示した。
しかしながら、以前の作業は、実際のデプロイメントにおけるオンライン探索のために、依然として安全上の課題を生じさせている。
本稿では、オフラインで訓練されたポリシーを微調整することで、視覚に基づくロボットタスクの展開段階における安全性をさらに向上することを目的とする。
論文 参考訳(メタデータ) (2024-07-06T03:22:57Z) - Probabilistic Reach-Avoid for Bayesian Neural Networks [71.67052234622781]
最適合成アルゴリズムは、証明された状態の数を4倍以上に増やすことができることを示す。
このアルゴリズムは、平均的な到達回避確率を3倍以上に向上させることができる。
論文 参考訳(メタデータ) (2023-10-03T10:52:21Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
本研究では,高次元連続行動空間における強化学習のためのパラメータ化政策の課題について検討する。
本稿では,連続RLポリシーを最適軌道の生成モデルとしてモデル化する原理的フレームワークを提案する。
本稿では,マルチモーダルポリシーパラメータ化と学習世界モデルを活用した実用的モデルベースRL手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T09:05:46Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
本稿では, 専門家エージェントから, 一定の有限個の実演において観測された動作を過小評価する報酬と環境力学の構造を復元することを目的とする。
タスクを実行するための正確な専門知識モデルは、臨床的意思決定や自律運転のような安全に敏感な応用に応用できる。
論文 参考訳(メタデータ) (2023-02-15T04:14:20Z) - Safe Policy Improvement in Constrained Markov Decision Processes [10.518340300810504]
本稿では,形式的要件の集合からの報酬形成と安全なポリシー更新という2つの課題を解くことで,合成問題の解決法を提案する。
前者に対しては,タスク仕様に準拠したスカラー報酬信号を定義する自動報酬生成手法を提案する。
後者では,高信頼度保証を伴う安全な方法でポリシーが改善されることを保証するアルゴリズムを導入する。
論文 参考訳(メタデータ) (2022-10-20T13:29:32Z) - Meta-Learning Priors for Safe Bayesian Optimization [72.8349503901712]
メタ学習アルゴリズムであるF-PACOHを構築し,データ不足の設定において確実な定量化を実現する。
コアコントリビューションとして、安全に適合した事前をデータ駆動で選択するための新しいフレームワークを開発する。
ベンチマーク関数と高精度動作系において,我々のメタ学習先行が安全なBOアプローチの収束を加速することを示す。
論文 参考訳(メタデータ) (2022-10-03T08:38:38Z) - Safe Reinforcement Learning in Constrained Markov Decision Processes [20.175139766171277]
本稿では,マルコフ決定過程を未知の安全制約下で探索・最適化するアルゴリズムSNO-MDPを提案する。
我々は、安全制約の満足度と累積報酬のほぼ最適性の両方を理論的に保証する。
論文 参考訳(メタデータ) (2020-08-15T02:20:23Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBAは、確率論的モデリング、情報理論、統計学といった側面を組み合わせた安全な強化学習のためのフレームワークである。
我々は,低次元および高次元の状態表現を含む安全な力学系ベンチマークを用いて,アルゴリズムの評価を行った。
アクティブなメトリクスと安全性の制約を詳細に分析することで,フレームワークの有効性を直感的に評価する。
論文 参考訳(メタデータ) (2020-06-12T10:40:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。