Analytic Mutual Information in Bayesian Neural Networks
- URL: http://arxiv.org/abs/2201.09815v1
- Date: Mon, 24 Jan 2022 17:30:54 GMT
- Title: Analytic Mutual Information in Bayesian Neural Networks
- Authors: Jae Oh Woo
- Abstract summary: Mutual information is an example of an uncertainty measure in a Bayesian neural network to quantify uncertainty.
We derive the analytical formula of the mutual information between model parameters and the predictive output by leveraging the notion of the point process entropy.
As an application, we discuss the estimation of the Dirichlet parameters and show its practical application in the active learning uncertainty measures.
- Score: 0.8122270502556371
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian neural networks have successfully designed and optimized a robust
neural network model in many application problems, including uncertainty
quantification. However, with its recent success, information-theoretic
understanding about the Bayesian neural network is still at an early stage.
Mutual information is an example of an uncertainty measure in a Bayesian neural
network to quantify epistemic uncertainty. Still, no analytic formula is known
to describe it, one of the fundamental information measures to understand the
Bayesian deep learning framework. In this paper, with the Dirichlet
distribution assumption in its intermediate encoded message, we derive the
analytical formula of the mutual information between model parameters and the
predictive output by leveraging the notion of the point process entropy. Then,
as an application, we discuss the estimation of the Dirichlet parameters and
show its practical application in the active learning uncertainty measures.
Related papers
- Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
A popular approach for estimating the predictive uncertainty of neural networks is to define a prior distribution over the network parameters.
We propose a scalable function-space variational inference method that allows incorporating prior information.
We show that the proposed method leads to state-of-the-art uncertainty estimation and predictive performance on a range of prediction tasks.
arXiv Detail & Related papers (2023-12-28T18:33:26Z) - Neural State-Space Models: Empirical Evaluation of Uncertainty
Quantification [0.0]
This paper presents preliminary results on uncertainty quantification for system identification with neural state-space models.
We frame the learning problem in a Bayesian probabilistic setting and obtain posterior distributions for the neural network's weights and outputs.
Based on the posterior, we construct credible intervals on the outputs and define a surprise index which can effectively diagnose usage of the model in a potentially dangerous out-of-distribution regime.
arXiv Detail & Related papers (2023-04-13T08:57:33Z) - MARS: Meta-Learning as Score Matching in the Function Space [79.73213540203389]
We present a novel approach to extracting inductive biases from a set of related datasets.
We use functional Bayesian neural network inference, which views the prior as a process and performs inference in the function space.
Our approach can seamlessly acquire and represent complex prior knowledge by metalearning the score function of the data-generating process.
arXiv Detail & Related papers (2022-10-24T15:14:26Z) - Look beyond labels: Incorporating functional summary information in
Bayesian neural networks [11.874130244353253]
We present a simple approach to incorporate summary information about the predicted probability.
The available summary information is incorporated as augmented data and modeled with a Dirichlet process.
We show how the method can inform the model about task difficulty or class imbalance.
arXiv Detail & Related papers (2022-07-04T07:06:45Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
A new approach with uncertainty-aware regression-based neural networks (NNs) shows promise over traditional deterministic methods and typical Bayesian NNs.
We detail the theoretical shortcomings and analyze the performance on synthetic and real-world data sets, showing that Deep Evidential Regression is a quantification rather than an exact uncertainty.
arXiv Detail & Related papers (2022-05-20T10:10:32Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - An Overview of Uncertainty Quantification Methods for Infinite Neural
Networks [0.0]
We review methods for quantifying uncertainty in infinite-width neural networks.
We make use of several equivalence results along the way to obtain exact closed-form solutions for predictive uncertainty.
arXiv Detail & Related papers (2022-01-13T00:03:22Z) - FF-NSL: Feed-Forward Neural-Symbolic Learner [70.978007919101]
This paper introduces a neural-symbolic learning framework, called Feed-Forward Neural-Symbolic Learner (FF-NSL)
FF-NSL integrates state-of-the-art ILP systems based on the Answer Set semantics, with neural networks, in order to learn interpretable hypotheses from labelled unstructured data.
arXiv Detail & Related papers (2021-06-24T15:38:34Z) - Multivariate Deep Evidential Regression [77.34726150561087]
A new approach with uncertainty-aware neural networks shows promise over traditional deterministic methods.
We discuss three issues with a proposed solution to extract aleatoric and epistemic uncertainties from regression-based neural networks.
arXiv Detail & Related papers (2021-04-13T12:20:18Z) - How Much Can I Trust You? -- Quantifying Uncertainties in Explaining
Neural Networks [19.648814035399013]
Explainable AI (XAI) aims to provide interpretations for predictions made by learning machines, such as deep neural networks.
We propose a new framework that allows to convert any arbitrary explanation method for neural networks into an explanation method for Bayesian neural networks.
We demonstrate the effectiveness and usefulness of our approach extensively in various experiments.
arXiv Detail & Related papers (2020-06-16T08:54:42Z) - Bayesian Neural Networks [0.0]
We show how errors in prediction by neural networks can be obtained in principle, and provide the two favoured methods for characterising these errors.
We will also describe how both of these methods have substantial pitfalls when put into practice.
arXiv Detail & Related papers (2020-06-02T09:43:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.