Bayesian Neural Scaling Law Extrapolation with Prior-Data Fitted Networks
- URL: http://arxiv.org/abs/2505.23032v3
- Date: Mon, 16 Jun 2025 01:34:25 GMT
- Title: Bayesian Neural Scaling Law Extrapolation with Prior-Data Fitted Networks
- Authors: Dongwoo Lee, Dong Bok Lee, Steven Adriaensen, Juho Lee, Sung Ju Hwang, Frank Hutter, Seon Joo Kim, Hae Beom Lee,
- Abstract summary: Scaling laws often follow the power-law and proposed several variants of power-law functions to predict the scaling behavior at larger scales.<n>Existing methods mostly rely on point estimation and do not quantify uncertainty, which is crucial for real-world applications.<n>In this work, we explore a Bayesian framework based on Prior-data Fitted Networks (PFNs) for neural scaling law extrapolation.
- Score: 100.13335639780415
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scaling has been a major driver of recent advancements in deep learning. Numerous empirical studies have found that scaling laws often follow the power-law and proposed several variants of power-law functions to predict the scaling behavior at larger scales. However, existing methods mostly rely on point estimation and do not quantify uncertainty, which is crucial for real-world applications involving decision-making problems such as determining the expected performance improvements achievable by investing additional computational resources. In this work, we explore a Bayesian framework based on Prior-data Fitted Networks (PFNs) for neural scaling law extrapolation. Specifically, we design a prior distribution that enables the sampling of infinitely many synthetic functions resembling real-world neural scaling laws, allowing our PFN to meta-learn the extrapolation. We validate the effectiveness of our approach on real-world neural scaling laws, comparing it against both the existing point estimation methods and Bayesian approaches. Our method demonstrates superior performance, particularly in data-limited scenarios such as Bayesian active learning, underscoring its potential for reliable, uncertainty-aware extrapolation in practical applications.
Related papers
- Post-Hoc Uncertainty Quantification in Pre-Trained Neural Networks via Activation-Level Gaussian Processes [0.15705429611931052]
We introduce the Gaussian Process Activation function (GAPA) to capture neuron-level uncertainties.<n>Our approach operates in a post-hoc manner, preserving the original mean predictions of the pre-trained neural network.
arXiv Detail & Related papers (2025-02-28T11:29:06Z) - Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
A popular approach for estimating the predictive uncertainty of neural networks is to define a prior distribution over the network parameters.
We propose a scalable function-space variational inference method that allows incorporating prior information.
We show that the proposed method leads to state-of-the-art uncertainty estimation and predictive performance on a range of prediction tasks.
arXiv Detail & Related papers (2023-12-28T18:33:26Z) - Learning Active Subspaces for Effective and Scalable Uncertainty
Quantification in Deep Neural Networks [13.388835540131508]
We propose a novel scheme for constructing a low-dimensional subspace of the neural network parameters.
We demonstrate that the significantly reduced active subspace enables effective and scalable Bayesian inference.
Our approach provides reliable predictions with robust uncertainty estimates for various regression tasks.
arXiv Detail & Related papers (2023-09-06T15:00:36Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
The linearized-Laplace approximation (LLA) has been shown to be effective and efficient in constructing Bayesian neural networks.
We study the usefulness of the LLA in Bayesian optimization and highlight its strong performance and flexibility.
arXiv Detail & Related papers (2023-04-17T14:23:43Z) - Toward Robust Uncertainty Estimation with Random Activation Functions [3.0586855806896045]
We propose a novel approach for uncertainty quantification via ensembles, called Random Activation Functions (RAFs) Ensemble.
RAFs Ensemble outperforms state-of-the-art ensemble uncertainty quantification methods on both synthetic and real-world datasets.
arXiv Detail & Related papers (2023-02-28T13:17:56Z) - Improved uncertainty quantification for neural networks with Bayesian
last layer [0.0]
Uncertainty quantification is an important task in machine learning.
We present a reformulation of the log-marginal likelihood of a NN with BLL which allows for efficient training using backpropagation.
arXiv Detail & Related papers (2023-02-21T20:23:56Z) - Modeling Uncertain Feature Representation for Domain Generalization [49.129544670700525]
We show that our method consistently improves the network generalization ability on multiple vision tasks.
Our methods are simple yet effective and can be readily integrated into networks without additional trainable parameters or loss constraints.
arXiv Detail & Related papers (2023-01-16T14:25:02Z) - A Solvable Model of Neural Scaling Laws [72.8349503901712]
Large language models with a huge number of parameters, when trained on near internet-sized number of tokens, have been empirically shown to obey neural scaling laws.
We propose a statistical model -- a joint generative data model and random feature model -- that captures this neural scaling phenomenology.
Key findings are the manner in which the power laws that occur in the statistics of natural datasets are extended by nonlinear random feature maps.
arXiv Detail & Related papers (2022-10-30T15:13:18Z) - MARS: Meta-Learning as Score Matching in the Function Space [79.73213540203389]
We present a novel approach to extracting inductive biases from a set of related datasets.
We use functional Bayesian neural network inference, which views the prior as a process and performs inference in the function space.
Our approach can seamlessly acquire and represent complex prior knowledge by metalearning the score function of the data-generating process.
arXiv Detail & Related papers (2022-10-24T15:14:26Z) - Efficient Bayes Inference in Neural Networks through Adaptive Importance
Sampling [19.518237361775533]
In BNNs, a complete posterior distribution of the unknown weight and bias parameters of the network is produced during the training stage.
This feature is useful in countless machine learning applications.
It is particularly appealing in areas where decision-making has a crucial impact, such as medical healthcare or autonomous driving.
arXiv Detail & Related papers (2022-10-03T14:59:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.