Hyperspectral Image Super-resolution with Deep Priors and Degradation
Model Inversion
- URL: http://arxiv.org/abs/2201.09851v1
- Date: Mon, 24 Jan 2022 18:17:40 GMT
- Title: Hyperspectral Image Super-resolution with Deep Priors and Degradation
Model Inversion
- Authors: Xiuheng Wang, Jie Chen, C\'edric Richard
- Abstract summary: Fusion-based hyperspectral image (HSI) super-resolution is attracting increasing attention.
Deep learning architectures have been used to address the HSI super-resolution problem.
We propose a method that makes use of the linear degradation model in the data-fidelity term of the objective function.
- Score: 6.0622962428871885
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To overcome inherent hardware limitations of hyperspectral imaging systems
with respect to their spatial resolution, fusion-based hyperspectral image
(HSI) super-resolution is attracting increasing attention. This technique aims
to fuse a low-resolution (LR) HSI and a conventional high-resolution (HR) RGB
image in order to obtain an HR HSI. Recently, deep learning architectures have
been used to address the HSI super-resolution problem and have achieved
remarkable performance. However, they ignore the degradation model even though
this model has a clear physical interpretation and may contribute to improve
the performance. We address this problem by proposing a method that, on the one
hand, makes use of the linear degradation model in the data-fidelity term of
the objective function and, on the other hand, utilizes the output of a
convolutional neural network for designing a deep prior regularizer in spectral
and spatial gradient domains. Experiments show the performance improvement
achieved with this strategy.
Related papers
- Physics-Inspired Degradation Models for Hyperspectral Image Fusion [61.743696362028246]
Most fusion methods solely focus on the fusion algorithm itself and overlook the degradation models.
We propose physics-inspired degradation models (PIDM) to model the degradation of LR-HSI and HR-MSI.
Our proposed PIDM can boost the fusion performance of existing fusion methods in practical scenarios.
arXiv Detail & Related papers (2024-02-04T09:07:28Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - Hyperspectral Image Super-Resolution via Dual-domain Network Based on
Hybrid Convolution [6.3814314790000415]
This paper proposes a novel HSI super-resolution algorithm, termed dual-domain network based on hybrid convolution (SRDNet)
To capture inter-spectral self-similarity, a self-attention learning mechanism (HSL) is devised in the spatial domain.
To further improve the perceptual quality of HSI, a frequency loss(HFL) is introduced to optimize the model in the frequency domain.
arXiv Detail & Related papers (2023-04-10T13:51:28Z) - HDNet: High-resolution Dual-domain Learning for Spectral Compressive
Imaging [138.04956118993934]
We propose a high-resolution dual-domain learning network (HDNet) for HSI reconstruction.
On the one hand, the proposed HR spatial-spectral attention module with its efficient feature fusion provides continuous and fine pixel-level features.
On the other hand, frequency domain learning (FDL) is introduced for HSI reconstruction to narrow the frequency domain discrepancy.
arXiv Detail & Related papers (2022-03-04T06:37:45Z) - Memory-augmented Deep Unfolding Network for Guided Image
Super-resolution [67.83489239124557]
Guided image super-resolution (GISR) aims to obtain a high-resolution (HR) target image by enhancing the spatial resolution of a low-resolution (LR) target image under the guidance of a HR image.
Previous model-based methods mainly takes the entire image as a whole, and assume the prior distribution between the HR target image and the HR guidance image.
We propose a maximal a posterior (MAP) estimation model for GISR with two types of prior on the HR target image.
arXiv Detail & Related papers (2022-02-12T15:37:13Z) - Learning A 3D-CNN and Transformer Prior for Hyperspectral Image
Super-Resolution [80.93870349019332]
We propose a novel HSISR method that uses Transformer instead of CNN to learn the prior of HSIs.
Specifically, we first use the gradient algorithm to solve the HSISR model, and then use an unfolding network to simulate the iterative solution processes.
arXiv Detail & Related papers (2021-11-27T15:38:57Z) - A Latent Encoder Coupled Generative Adversarial Network (LE-GAN) for
Efficient Hyperspectral Image Super-resolution [3.1023808510465627]
generative adversarial network (GAN) has proven to be an effective deep learning framework for image super-resolution.
To alleviate the problem of mode collapse, this work has proposed a novel GAN model coupled with a latent encoder (LE-GAN)
LE-GAN can map the generated spectral-spatial features from the image space to the latent space and produce a coupling component to regularise the generated samples.
arXiv Detail & Related papers (2021-11-16T18:40:19Z) - Unsupervised Alternating Optimization for Blind Hyperspectral Imagery
Super-resolution [40.350308926790255]
This paper proposes an unsupervised blind HSI SR method to handle blind HSI fusion problem.
We first propose an alternating optimization based deep framework to estimate the degeneration models and reconstruct the latent image.
Then, a meta-learning based mechanism is further proposed to pre-train the network, which can effectively improve the speed and generalization ability.
arXiv Detail & Related papers (2020-12-03T07:52:32Z) - Hyperspectral Image Super-resolution via Deep Spatio-spectral
Convolutional Neural Networks [32.10057746890683]
We propose a simple and efficient architecture for deep convolutional neural networks to fuse a low-resolution hyperspectral image and a high-resolution multispectral image.
The proposed network architecture achieves best performance compared with recent state-of-the-art hyperspectral image super-resolution approaches.
arXiv Detail & Related papers (2020-05-29T05:56:50Z) - PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of
Generative Models [77.32079593577821]
PULSE (Photo Upsampling via Latent Space Exploration) generates high-resolution, realistic images at resolutions previously unseen in the literature.
Our method outperforms state-of-the-art methods in perceptual quality at higher resolutions and scale factors than previously possible.
arXiv Detail & Related papers (2020-03-08T16:44:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.